Home

Awesome

BTS-Net (ICME 2021)

BTS-NET: BI-DIRECTIONAL TRANSFER-AND-SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION

<p align="center"> <img src="Img/Diagram.png" width="80%"/> <br /> <em> Block diagram of the proposed BTS-Net. </em> </p>

1. Introduction

Features

Easy-to-use to boost your methods

if you adopt parallel encoders for RGB and depth:

If you use a depth branch as an affiliate to RGB branch:

2. Requirements

3. Data Preparation

4. Testing & Training

5. Results

</p> <p align="center"> <img src="./Img/comparison.png" width="100%"/> <br /> <em> Quantitative comparison with 16 SOTA over 4 metrics (S-measure, max F-measure, max E-measure and MAE) on 6 datasets. </em> </p>

Download

6. Citation

Please cite the following paper if you use this repository in your reseach

@inproceedings{Zhang2021BTSNet,
 title={BTS-Net: Bi-directional Transfer-and-Selection Network for RGB-D Salient Object Detection},
  author={Wenbo Zhang and Yao Jiang and Keren Fu and Qijun Zhao},
  booktitle={ICME},
  year={2021}
}