Home

Awesome

Evaluating Feature Attribution Methods in the Image Domain

This repository contains the code to reproduce the results presented in Evaluating Feature Attribution Methods in the Image Domain. Implementations of the metrics are available in the attribench package, which this repository depends on.

Installation

Installing the required dependencies to reproduce and/or visualize the results can be done using a virtual environment:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

Reproducing the results

1. Download the datasets

To download all the datasets used in the original publication:

(venv) $ python download_reqs.py -d all

To download specific datasets, pass the desired datasets as arguments to the script. For example, if only MNIST, FashionMNIST and Places-365 are required:

(venv) $ python download_reqs.py -d MNIST FashionMNIST Places-365

Note: Instead of the full ImageNet dataset, this script will download ImageNette, a subset of ImageNet.

2. Download trained models

To download trained model parameters for the datasets and models used in the original publication:

(venv) $ python download_reqs.py -m

3. Train adversarial patches

This step is optional: The following command can be used to download trained adversarial patches for the datasets used in the original publication:

(venv) $ python download_reqs.py -p

If you prefer training the adversarial patches yourself, the train_patches.py script can be used. An example for the ImageNet dataset, using ResNet18 architecture, a batch size of 64, and CUDA:

(venv) $ python train_patches.py -d ImageNet -m resnet18 -b 64 -c

For more information, run python train_patches.py -h.

4. Run benchmark

This step is optional: The following command can be used to download benchmark results from the original publication:

(venv) $ python download_reqs.py -r

To run the general benchmark on a given dataset, use the run_benchmark.py script. This script requires 2 configuration files: one file specifying the metrics that need to be run (this configuration is passed to the attribench dependency package), and another specifying the attribution methods that need to be tested (this configuration is processed directly). The following commands can be used to run the full benchmark on all datasets from the original publication, for 256 samples using a batch size of 64:

(venv) $ python run_benchmark.py -d ImageNet -m resnet18 -b 64 -n 256 -ci -o imagenet.h5 config/suite.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d Caltech256 -m resnet18 -b 64 -n 256 -ci -o caltech.h5 config/suite.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d Places365 -m resnet18 -b 64 -n 256 -ci -o places.h5 config/suite.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d MNIST -m CNN -b 64 -n 256 -ci -o mnist.h5 config/suite_no_ic.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d FashionMNIST -m CNN -b 64 -n 256 -ci -o fashionmnist.h5 config/suite_no_ic.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d SVHN -m resnet20 -b 64 -n 256 -ci -o svhn.h5 config/suite_no_ic.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d CIFAR10 -m resnet20 -b 64 -n 256 -ci -o cifar10.h5 config/suite_no_ic.yaml config/methods.yaml
(venv) $ python run_benchmark.py -d CIFAR100 -m resnet20 -b 64 -n 256 -ci -o cifar100.h5 config/suite_no_ic.yaml config/methods.yaml

For more info on the arguments for the run_benchmark.py script, run python run_benchmark.py -h.

We provide 2 configuration files for the benchmark: config/suite.yaml and config/suite_no_ic.yaml. These files are exactly the same, except that config/suite_no_ic.yaml will skip the Impact Coverage metric. Use this script on the low-dimensional datasets, for which adversarial patches are not available.

config/methods.yaml contains the configuration for attribution methods. This file can be modified to remove/add attribution methods, or change their hyperparameters.

To run the signal-to-noise ratio experiments for Sensitivity-n and SegSensitivity-n (see Section 7.5 of the paper), use the sens_n_variance.py script. For example, for the MNIST dataset (other datasets are analogous):

(venv) $ python sens_n_variance.py -d MNIST -m CNN -b 64 -n 256 -i 100 -o out -c

5. Analyse results

To generate all plots from the paper, three scripts are used. These examples assume that the .h5 files with the results are stored in the out/ directory.

  1. To produce the general plots: python plot/general_plots.py out/ plot/out
  2. To produce the plots that compare the SNR and variance of Sensitivity-n and SegSensitivity-n: python plot/sens_n_variance_plots.py out/ plot/out/sens_n.png
  3. To produce the specific plots for the case study on ImageNet (appendix): python plot/case_study_plots.py out/ plot/out/case_study