Awesome
Auto-STGCN
An automated system for STGCN model development.<br> Code for paper 'Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search Based on Reinforcement Learning and Existing Research Results'.<br>
1. Auto-STGCN Algorithm: Searching for the optimal STGCN model
Related Files
Auto_STGCN.py --- run Auto-STGCN algorithm<br> Model.py --- build STGCN model according to code<br> Env.py --- read dataset, record the state-action-reward information in Auto-STGCN algorithm<br> ExperimentDataLogger.py --- output the log information of Auto-STGCN algorithm<br> /Log --- log files<br> /utils --- auxiliary files<br> /data --- datasets<br> /Config --- default configurations<br>
Inputs Details
- Dataset name, Dataset partition ratio (validation set, test set, training set), Input sequence length, Output sequence length,<br>
- Timemax, Epoch size of each candidate model,<br>
- Initial epsilon, Epsilon decay step, Epsilon decay Ratio, Gamma of Qlearning, Learning rate of Qlearning, Episodes of Qlearning<br>
Outputs Details
- Code and performance scores of the Optimal STGCN searched by Auto-STGCN<br>
- Log info of Auto-STGCN<br>
Commands
python Auto_STGCN.py --data "PEMS03"
<br>python Auto_STGCN.py --data "PEMS03" --gamma 0.1
<br>
2. Auto-STGCN Algorithm: Training the optimal STGCN model
Related Files
TestBestGNN.py --- train the optimal STGCN model searched by Auto-STGCN algorithm<br> Model.py --- build STGCN model according to code<br> /Log --- log files<br> /utils --- auxiliary files<br> /data --- datasets<br> /Config --- default configurations<br>
Inputs Details
- Optimal STGCN code, Dataset name, Dataset partition ratio (validation set, test set, training set), Input sequence length, Output sequence length,<br>
- Model training epochs, Model training times,<br>
- Load model weight = None<br>
Outputs Details
- Performance scores (Mean + variance: MAE, MAPE, RMSE, Time) of the Optimal STGCN model<br>
- Log info of the model training<br>
Commands
python TestBestSTGNN.py --model "./Config/qlearning_2.json" --data "PEMS03"
<br>python TestBestSTGNN.py --model "./Config/qlearning_2.json" --data "PEMS03" --gamma 0.1
<br>
3. Auto-STGCN Algorithm: Loading the optimal STGCN model
Related Files
TestBestGNN.py --- test the performance of optimal STGCN model searched by Auto-STGCN algorithm<br> Model.py --- build STGCN model according to code<br> /Log --- log files<br> /utils --- auxiliary files<br> /data --- datasets<br> /Config --- default configurations<br>
Inputs Details
- Dataset name, test number, Load model weight = Model loading path <br>
Outputs Details
- Performance scores (Mean + variance: MAE, MAPE, RMSE, Time) of the Optimal STGCN model on test set<br>
Commands
python TestBestGNN.py --data "PEMS03" --load "./Log/PEMS03_experiment2_qlearning2_test/GNN/best_GNN_model.params" --times 1
<br>