Awesome
Deep Alignment Network: A convolutional neural network for robust face alignment
This is a Tensorflow implementations of paper "Deep Alignment Network: A convolutional neural network for robust face alignment". You can see Original implementation here.
System
- No Windows !
Getting started
- Tensorflow 1.7.0
- OpenCV 3.1.0 or newer
Train Model
- Download Datasets.
- Put
images & pts
inSAME
folder. - Write mirror file. There is a 68 landmark mirror file. download
- Preprocess.
python preprocessing.py --input_dir=... --output_dir=... --istrain=True --repeat=10 --img_size=112 --mirror_file=./Mirror68.txt
- Train model.
python DAN_V2.py -ds 1 --data_dir=preprocess_output_dir --data_dir_test=...orNone -nlm 68 -te=15 -epe=1 -mode train
python DAN_V2.py -ds 2 --data_dir=preprocess_output_dir --data_dir_test=...orNone -nlm 68 -te=45 -epe=1 -mode train
Eval Acc
- Download Datasets for test.
- Put
images & pts
inSAME
folder. - Preprocess.
python preprocessing.py --input_dir=... --output_dir=... --istrain=False --img_size=112
- Eval model Acc.
python DAN_V2.py -ds 2 --data_dir=preprocess_output_dir -nlm 68 -mode eval
Results on 300W
- Speed : 4ms per Image on GTX 1080 Ti
- Err :
1.34 %
on 300W common subset(bounding box diagonal normalization).
Pre-trained Model
TODO:You can download pre-trained model here. This model trained on 300W dataset.