Awesome
bipedal-robot-learning-collection
-
This repo is a collection for high-quality robotics papers, with specialization on bipedal robots and reinforcement learning with real robot experiments. Papers on common learning techniques verified on quadrupedal robots, Bayesian optimization, CBF learning, etc., are temporarily excluded.
-
I hope this can do a service for easy writing of literature review in papers. Abstracts or brief descriptions will later be added.
-
Welcome to contribute by nominating new papers in Issues.
-
The list currently misses the ones in/after CoRL 2024.
In and after 2023, bold: highly recommended by me
- Singh, Rohan P., et al. "Learning bipedal walking for humanoids with current feedback." IEEE Access (2023).
- Radosavovic, Ilija, et al. "Real-world humanoid locomotion with reinforcement learning." Science Robotics 9.89 (2024): eadi9579. (I recommend reading arxiv 2303.03381 v1 for more technical details despite some later-revised contents)
- Jeon, Se Hwan, et al. "Benchmarking potential based rewards for learning humanoid locomotion." 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.
- C. -Y. Kuo, H. Shin and T. Matsubara, "Reinforcement Learning With Energy-Exchange Dynamics for Spring-Loaded Biped Robot Walking," in IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6243-6250, Oct. 2023
- Dao, Jeremy, Helei Duan, and Alan Fern. "Sim-to-Real Learning for Humanoid Box Loco-Manipulation." arXiv preprint arXiv:2310.03191 (2023).
- J. Ding, T. L. Lam, L. Ge, J. Pang and Y. Huang, "Safe and Adaptive 3-D Locomotion via Constrained Task-Space Imitation Learning," in IEEE/ASME Transactions on Mechatronics, vol. 28, no. 6, pp. 3029-3040, Dec. 2023
- Chen, Yu-Ming, Hien Bui, and Michael Posa. "Reinforcement Learning for Reduced-order Models of Legged Robots." arXiv preprint arXiv:2310.09873 (2023).
- Smith, Laura, et al. "Learning and adapting agile locomotion skills by transferring experience." arXiv preprint arXiv:2304.09834 (2023).
- Chun, Yeonghun, et al. "DDPG Reinforcement Learning Experiment for Improving the Stability of Bipedal Walking of Humanoid Robots." 2023 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2023.
- Qin, Daoling, et al. "A Heuristics-Based Reinforcement Learning Method to Control Bipedal Robots." International Journal of Humanoid Robotics 2350013 (2023): 22.
- Shi, F. et al. (2023). Reference-Free Learning Bipedal Motor Skills via Assistive Force Curricula. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham.
- Kim, Donghyeon, et al. "Torque-based Deep Reinforcement Learning for Task-and-Robot Agnostic Learning on Bipedal Robots Using Sim-to-Real Transfer." arXiv preprint arXiv:2304.09434 (2023).
- Duan, Helei, et al. "Learning Vision-Based Bipedal Locomotion for Challenging Terrain." arXiv preprint arXiv:2309.14594 (2023).
- Li, Zhongyu, et al. "Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control." arXiv preprint arXiv:2401.16889 (2024).
- Li, Zhongyu, et al. "Robust and versatile bipedal jumping control through multi-task reinforcement learning." arXiv preprint arXiv:2302.09450 (2023).
- Li, Yunfei, et al. "Learning Agile Bipedal Motions on a Quadrupedal Robot." arXiv preprint arXiv:2311.05818 (2023).
- Haarnoja, Tuomas, et al. "Learning agile soccer skills for a bipedal robot with deep reinforcement learning." Science Robotics 9.89 (2024): eadi8022.
- Castillo, Guillermo A., et al. "Template model inspired task space learning for robust bipedal locomotion." 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023.
- Cheng, Xuxin, et al. "Expressive Whole-Body Control for Humanoid Robots." arXiv preprint arXiv:2402.16796 (2024).
- Zhang, Qiang, et al. "Whole-body Humanoid Robot Locomotion with Human Reference." arXiv preprint arXiv:2402.18294 (2024).
- Radosavovic, I., Zhang, B., Shi, B., Rajasegaran, J., Kamat, S., Darrell, T., … Malik, J. (2024). Humanoid Locomotion as Next Token Prediction. arXiv preprint arXiv: 2402.19469 (2024).
- He, T., Luo, Z., Xiao, W., Zhang, C., Kitani, K., Liu, C., & Shi, G. (2024). Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation. https://human2humanoid.com/.
- Fu, Zipeng, et al. HumanPlus: Humanoid Shadowing and Imitation from Humans. https://humanoid-ai.github.io/
- He, Tairan, et al. OmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning. https://omni.human2humanoid.com/
- Xinyang Gu, Yen-Jen Wang, Jianyu Chen. "Humanoid-Gym: Reinforcement Learning for Humanoid Robot with Zero-Shot Sim2Real Transfer." (2024 https://arxiv.org/abs/2404.05695, https://github.com/roboterax/humanoid-gym).
- van Marum, Bart, et al. "Revisiting Reward Design and Evaluation for Robust Humanoid Standing and Walking." arXiv preprint arXiv:2404.19173 (2024).
- Tirumala, Dhruva, et al. "Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning." arXiv preprint arXiv:2405.02425 (2024).
- Zhang, Chong, et al. WoCoCo: Learning Whole-Body Humanoid Control with Sequential Contacts. https://lecar-lab.github.io/wococo/ (2024)
- Zhuang, Ziwen, et al. Humanoid Parkour Learning. https://humanoid4parkour.github.io/ (2024)
- Fu, Z., Zhao, Q., Wu, Q., Wetzstein, G., & Finn, C. (2024). HumanPlus: Humanoid Shadowing and Imitation from Humans. arXiv. (2024)
- Xinyang Gu, et al. Advancing Humanoid Locomotion: Mastering Challenging Terrains with Denoising World Model Learning. RSS 2024.
- Dugar, Pranay, et al. "Learning Multi-Modal Whole-Body Control for Real-World Humanoid Robots." arXiv preprint arXiv:2408.07295 (2024).
before 2023
- Cassie and Digit
The cassie simulatoin environment: link- Xie, Zhaoming, et al. "Feedback control for cassie with deep reinforcement learning." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. (first biped end2end work)
- Xie, Zhaoming, et al. "Learning locomotion skills for cassie: Iterative design and sim-to-real." Conference on Robot Learning. PMLR, 2020.
- Siekmann, Jonah, et al. "Learning Memory-Based Control for Human-Scale Bipedal Locomotion." Robotics science and systems. 2020.
- Siekmann, Jonah, et al. "Blind bipedal stair traversal via sim-to-real reinforcement learning." Robotics science and systems. 2021.
- Green, Kevin, et al. "Learning spring mass locomotion: Guiding policies with a reduced-order model." IEEE Robotics and Automation Letters 6.2 (2021): 3926-3932.
- Li, Zhongyu, et al. "Reinforcement learning for robust parameterized locomotion control of bipedal robots." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.
- Duan, Helei, et al. "Learning task space actions for bipedal locomotion." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.
- Siekmann, Jonah, et al. "Sim-to-real learning of all common bipedal gaits via periodic reward composition." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.
- Castillo, Guillermo A., et al. "Robust feedback motion policy design using reinforcement learning on a 3D digit bipedal robot." 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.
- Dao, Jeremy, et al. "Sim-to-Real Learning for Bipedal Locomotion Under Unsensed Dynamic Loads." 2022 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022.
- Duan, Helei, et al. "Sim-to-Real Learning of Footstep-Constrained Bipedal Dynamic Walking." 2022 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022.
- Rajan, Lokesh Krishna, et al. "Linear Policies are Sufficient to Realize Robust Bipedal Walking on Challenging Terrains." IEEE Robotics and Automation Letters (2022).
- Duan, Helei, et al. "Learning Dynamic Bipedal Walking Across Stepping Stones." arXiv preprint arXiv:2205.01807 (2022).
- Kumar, Ashish, et al. "Adapting Rapid Motor Adaptation for Bipedal Robots." arXiv preprint arXiv:2205.15299 (2022).
- Batke, Ryan, et al. "Optimizing Bipedal Maneuvers of Single Rigid-Body Models for Reinforcement Learning." arXiv preprint arXiv:2207.04163 (2022).
- Yu, Fangzhou, et al. "Dynamic Bipedal Maneuvers through Sim-to-Real Reinforcement Learning." arXiv preprint arXiv:2207.07835 (2022).
- More to be added
- Darwin OPx
- Yu, Wenhao, et al. "Sim-to-real transfer for biped locomotion." 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.
- Bloesch, Michael, et al. "Towards Real Robot Learning in the Wild: A Case Study in Bipedal Locomotion." Conference on Robot Learning. PMLR, 2022.
- Bohez, Steven, et al. "Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors." arXiv preprint arXiv:2203.17138 (2022).
- Masuda, Shimpei, and Kuniyuki Takahashi. "Sim-to-Real Learning of Robust Compliant Bipedal Locomotion on Torque Sensor-Less Gear-Driven Humanoid." arXiv preprint arXiv:2204.03897 (2022).
- Byravan, Arunkumar, et al. "NeRF2Real: Sim2real Transfer of Vision-guided Bipedal Motion Skills using Neural Radiance Fields." arXiv preprint arXiv:2210.04932 (2022).
- More to be added
- Other Platforms
- Li, Tianyu, et al. "Using deep reinforcement learning to learn high-level policies on the atrias biped." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
- Rodriguez, Diego, and Sven Behnke. "DeepWalk: Omnidirectional bipedal gait by deep reinforcement learning." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. (first adule-size humanoid end2end learning with real world results)
- Yu, Chen, and Andre Rosendo. "Multi-Modal Legged Locomotion Framework with Automated Residual Reinforcement Learning." arXiv preprint arXiv:2202.12033 (2022).
- Singh, Rohan Pratap, et al. "Learning Bipedal Walking On Planned Footsteps For Humanoid Robots." arXiv preprint arXiv:2207.12644 (2022).
- Gams, A., Petrič, T., Nemec, B. et al. Manipulation Learning on Humanoid Robots. Curr Robot Rep 3, 97–109 (2022). https://doi.org/10.1007/s43154-022-00082-9
- Shi, Fan, et al. "Learning agile hybrid whole-body motor skills for thruster-aided humanoid robots." 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.