Awesome
Ring Flash Attention
This repo implements RingAttention using FlashAttention. The current implementation supports:
- varlen (packing samples) api, corresponding to
flash_attn_varlen_func
:ring_flash_attn_varlen_func
: A basic implementation of ring attention.zigzag_ring_flash_attn_varlen_func
: an more compute-balanced version of ring attention. More details in issue#2.llama3_flash_attn_varlen_func
: The context parallelism used in llama3 tech report with extra design for varlen and low memory overhead. Although technically not ring attention, this is recommended for most varlen use cases, as it offers a less intrusive alternative for training frameworks with fewer data manipulations and better arithmetic precision.
- batch api, corresponding to
flash_attn_func
:ring_flash_attn_func
: basic ring attention.zigzag_ring_flash_attn_func
: An more compute balanced version of ring attention, see issue#2.stripe_flash_attn_func
: Stripe attention version ofring_flash_attn_func
, the block size is set to 1 to use flash_attn api, see: https://arxiv.org/abs/2311.09431
- huggingface model adapter. Here is an example to use the adapter: OpenRLHF/OpenRLHF/pull#439.
Note that
- Each function includes
*_func
,*_kvpacked_func
,*_qkvpacked_func
variants. - The varlen versions (except the llama3 version) only support passing one
cu_seqlens
.
Performance Summary
The following table summarizes the performance of the implemented APIs:
batch api | GPU | theoretic<br />flash_attn | ring_attn | zigzag_ring | stripe_attn |
---|---|---|---|---|---|
fwd only (iter/sec) | 8xH800 | 591.5 / 8 = 73.9 | 38.5 | 63.0 | 55.0 |
52.1% | 85.2% | 74.4% | |||
fwd + bwd (iter/sec) | 8xH800 | 154.7 / 8 = 19.3 | 10.4 | 17.4 | 16.0 |
53.9% | 90.2% | 82.9% | |||
fwd only (iter/sec) | 8xA100 | 373.4 / 8 = 46.7 | 24.0 | 38.2 | 32.5 |
51.4% | 81.7% | 69.6% | |||
fwd + bwd (iter/sec) | 8xA100 | 94.7 / 8 = 11.8 | 6.2 | 10.6 | 9.75 |
52.5% | 89.8% | 82.6% | |||
varlen api | GPU | theoretic<br />flash_attn | ring_attn | zigzag_ring | llama3_attn |
fwd only (iter/sec) | 8xH800 | 852.4 / 8 = 106.6 | 52.4 | 74.8 | 60.8 |
49.1% | 70.2% | 57.0% | |||
fwd + bwd (iter/sec) | 8xH800 | 225.4 / 8 = 28.2 | 14.4 | 21.4 | 16.4 |
51.1% | 75.9% | 58.1% | |||
fwd only (iter/sec) | 8xA100 | 532.3 / 8 = 66.5 | 33.1 | 47.9 | 34.3 |
49.8% | 72.0% | 51.6% | |||
fwd + bwd (iter/sec) | 8xA100 | 133.8 / 8 = 16.7 | 8.7 | 13.4 | 9.7 |
52.1% | 80.2% | 58.0% |
Note that
- The code of the benchmark is in benchmark, its configuration matches the Meta-Llama-3.1-8B setting, with a total sequence of length 8k per GPU.
- When running the benchmark with with 8 gpu, the flash attn code is running with 1/8 computation of ring attention, as flash attn code is running
8*1^2
, while the ring attn code is running1*8^2
. - NVLink between GPUs are required for high performance.
- Please remember to adapt the RoPE offset for different api.
Installation
pip install ring-flash-attn
or use the following command to build from source:
git clone https://github.com/zhuzilin/ring-flash-attention.git
cd ring-flash-attention
pip install .
TODOs
- Implement
ring_flash_attn_varlen_qkvpacked_func
- Implement
zigzag_ring_flash_attn_qkvpacked_func
issue#2 - Implement
stripe_flash_attn_qkvpacked_func
- Implement
zigzag_ring_flash_attn_varlen_qkvpacked_func
- Implement
*_kvpacked_func
and*_func
variant for all APIs -
OptimizeImplement*_varlen_func
llama3_flash_attn_varlen_func
-
Add an example to train llamaImplement adapter for huggingface model - Implement
zigzag_llama3_flash_attn_varlen_func
Test
torchrun --nproc_per_node 8 test/test_llama3_flash_attn_varlen_func.py
torchrun --nproc_per_node 8 test/test_ring_flash_attn_func.py
torchrun --nproc_per_node 8 test/test_ring_flash_attn_varlen_func.py
torchrun --nproc_per_node 8 test/test_zigzag_ring_flash_attn_func.py
torchrun --nproc_per_node 8 test/test_zigzag_ring_flash_attn_varlen_func.py
torchrun --nproc_per_node 8 test/test_stripe_flash_attn_func.py
Benchmark
torchrun --nproc_per_node 8 benchmark/benchmark_kvpacked_func.py
torchrun --nproc_per_node 8 benchmark/benchmark_varlen_kvpacked_func.py
Known Limitations
There are some arithmetic errors with the current implementation. The reason for them is probably that flash attention will return bf16 value for each block, so we cannot accumluate the values with the original fp32 ones.
And also because we need to save extra fp32 buffer during computation, the memory usage would be higher than theoretic limit.
Also,
- dropout is not supported at the moment, because it's hard to save all the rng_states.
- window_size is not supported, because it will be really tricky to implement a varlen version with window_size.