Awesome
<div style="display: flex; align-items: center;"> <a href="https://arxiv.org/abs/2403.06199"> <h1>LLaVA-Phi & Mipha: Towards Multimodal Small Language Models</h1> </a> </div> <div align="center"> <img src="docs/mipha.jpg" width="20%"> </div>-
LLaVA-Phi: Efficient Multi-Modal Assistant with Small Language Model <br>
-
Mipha: A Comprehensive Overhaul of Multimodal Assistant with Small Language Models <br>
📸 Release
March. 23th, 2024
: 🔥🔥🔥 LLaVA-Phi is accepted by ACMMM 2024 Workshop, and Mipha is accepted by AAAI 2025 Main Track.March. 23th, 2024
: Our model 🔥🔥🔥 Mipha-3B and corresponding training codes are released.Jan. 26th, 2024
:Now you can download our model weight.Jan. 15th, 2024
:Our model and training codes are released.Jan. 5th, 2024
: Our codes are currently undergoing an internal review and will be released shortly (expected next week)
Model Zoo
Mipha & LLaVA-Phi
Model | LLM | VQAv2 | GQA | SQA<sup>I</sup> | VQA<sup>T</sup> | POPE | MME<sup>P</sup> | MMB |
---|---|---|---|---|---|---|---|---|
<div style="width: 93pt"> LLaVA-Phi-3B | <div style="width: 91pt"> Phi-2-2.7B | 71.4 | - | 68.4 | 48.6 | 85.0 | 1335.1 | 59.8 |
<div style="width: 93pt"> Mipha-1.6B | <div style="width: 91pt"> Phi-1.5-1.3B | 77.5 | 62.7 | 58.3 | 45.6 | 86.9 | 1203.1 | 57.7 |
<div style="width: 93pt"> Mipha-2.4B | <div style="width: 91pt"> Gemma-2B | 79.5 | 63.3 | 65.3 | 52.4 | 86.6 | 1397.1 | 59.4 |
<div style="width: 93pt"> Mipha-3B | <div style="width: 91pt"> Phi-2-2.7B | 81.3 | 63.9 | 70.9 | 56.6 | 86.7 | 1488.9 | 69.7 |
Contents
Install
- Clone this repository and navigate to llava-phi folder
git clone https://github.com/zhuyiche/Mipha.git
cd Mipha
- Install Package
conda create -n mipha python=3.10 -y
conda activate mipha
pip install --upgrade pip # enable PEP 660 support
pip install -e .
Mipha Weights
Download Mipha-3B at huggingface
Train
Mipha training consists of two stages: (1) feature alignment stage: use LLaVA-1.5 558K subset of the LAION-CC-SBU dataset to connect a frozen pretrained vision encoder to a frozen LLM; (2) visual instruction tuning stage: visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.
Hyperparameters
The hyperparameters used in pretraining and finetuning are provided below.
- Pretraining
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
Mipha | 256 | 1e-3 | 1 | 2048 | 0 |
- Finetuning
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
Mipha | 128 | 2e-5 | 2 | 2048 | 0 |
Download base checkpoints
Our base model is phi-2. You should download the weights from here, and change the --model_name_or_path
in get_base_model.sh
. <br>
Our vision encoder is SigLIP-SO (0.4B). You should download the weights from here.
Integrate the model
Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions from here. <br>
Then, you should integrate phi-2 and SigLIP-SO into a single model by running the following script:
bash ./script/mipha/get_base_model.sh
Pretrain (feature alignment)
bash ./scripts/mipha/pretrain.sh
Visual Instruction Tuning
Please refer here to prepare the instruction tuning data.
Training script with DeepSpeed ZeRO-3: finetune.sh
.
bash ./scripts/mipha/finetune.sh
Evaluation
To ensure the reproducibility, we evaluate the models with greedy decoding.
See Evaluation.md.
CLI Inference Guide
You can chat about images using Mipha without the Gradio interface. Here is an example command:
python -m mipha.serve.cli \
--model-path /path/to/mipha-3B \
--image-file "mipha/serve/examples/extreme_ironing.jpg" \
--conv-mode phi
Citation
If you find LLaVA-Phi or Mipha useful in your research or applications, please consider giving a star ⭐ and citing using the following BibTeX:
@inproceedings{zhu2024llava,
title={Llava-phi: Efficient multi-modal assistant with small language model},
author={Zhu, Yichen and Zhu, Minjie and Liu, Ning and Xu, Zhiyuan and Peng, Yaxin},
booktitle={Proceedings of the 1st International Workshop on Efficient Multimedia Computing under Limited},
pages={18--22},
year={2024}
}
@article{zhu2024comprehensive,
title={A Comprehensive Overhaul of Multimodal Assistant with Small Language Models},
author={Zhu, Minjie and Zhu, Yichen and Liu, Xin and Liu, Ning and Xu, Zhiyuan and Shen, Chaomin and Peng, Yaxin and Ou, Zhicai and Feng, Feifei and Tang, Jian},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2024}
}
Acknowledgement
We build our project based on
- LLaVA: an amazing open-sourced project for vision language assistant
- LLaMA-Factory: We use this codebase to finetune SLMs
- Safe-RLHF: We use this codebase to instruct-tune SLMs