Home

Awesome

Open Compound Domain Adaptation

[Project] [Paper] [Demo] [Blog]

Overview

Open Compound Domain Adaptation (OCDA) is the author's re-implementation of the compound domain adaptator described in:
"Open Compound Domain Adaptation"
Ziwei Liu<sup>*</sup>Zhongqi Miao<sup>*</sup>Xingang PanXiaohang ZhanDahua LinStella X. YuBoqing Gong  (CUHK & Berkeley & Google)  in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020, Oral Presentation

<img src='./assets/intro.png' width=900>

Further information please contact Zhongqi Miao and Ziwei Liu.

Requirements

Updates:

Data Preparation

<img src='./assets/dataset.png' width=500>

[OCDA Datasets]

First, please download C-Digits, save it to a directory, and change the dataset root in the config file accordingly. The file contains MNIST, MNIST-M, SVHN, SVHN-bal, and SynNum.

For C-Faces, please download Multi-PIE first. Since it is a proprietary dataset, we can only privide the data list we used during training here. We will update the dataset function accordingly.

Getting Started (Training & Testing)

<img src='./assets/pipeline.png' width=900>

C-Digits

To run experiments for both training and evaluation on the C-Digits datasets (SVHN -> Multi):

python main.py --config ./config svhn_bal_to_multi.yaml

After training is completed, the same command will automatically evaluate the trained models.

C-Faces

C-Driving

Reproduced Benchmarks and Model Zoo

NOTE: All reproduced weights need to be decompressed into results directory:

OpenCompoundedDomainAdaptation-OCDA
    |--results

C-Digits (Results may currently have variations.)

SourceMNIST (C)MNIST-M (C)USPS (C)SymNum (O)Avg. AccDownload
SVHN89.6264.5381.1787.8680.80model

License and Citation

The use of this software is released under BSD-3.

@inproceedings{compounddomainadaptation,
  title={Open Compound Domain Adaptation},
  author={Liu, Ziwei and Miao, Zhongqi and Pan, Xingang and Zhan, Xiaohang and Lin, Dahua and Yu, Stella X. and Gong, Boqing},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}