Home

Awesome

Fast implementation of BERT inference directly on NVIDIA (CUDA, CUBLAS) and Intel MKL

Build Status

Highly customized and optimized BERT inference directly on NVIDIA (CUDA, CUBLAS) or Intel MKL, without tensorflow and its framework overhead.

ONLY BERT (Transformer) is supported.

Benchmark

Environment

GPU (cuBERT)

batch size128 (ms)32 (ms)
tensorflow255.270.0
cuBERT184.654.5

CPU (mklBERT)

batch size128 (ms)1 (ms)
tensorflow1504.069.9
mklBERT984.924.0

Note: MKL should be run under OMP_NUM_THREADS=? to control its thread number. Other environment variables and their possible values includes:

Mixed Precision

cuBERT can be accelerated by Tensor Core and Mixed Precision on NVIDIA Volta and Turing GPUs. We support mixed precision as variables stored in fp16 with computation taken in fp32. The typical accuracy error is less than 1% compared with single precision inference, while the speed achieves more than 2x acceleration.

API

API .h header

Pooler

We support following 2 pooling method.

with tf.variable_scope("pooler"):
  # We "pool" the model by simply taking the hidden state corresponding
  # to the first token. We assume that this has been pre-trained
  first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
  self.pooled_output = tf.layers.dense(
    first_token_tensor,
    config.hidden_size,
    activation=tf.tanh,
    kernel_initializer=create_initializer(config.initializer_range))
self.pooled_output = tf.reduce_mean(self.sequence_output, axis=1)

Output

Following outputs are supported:

cuBERT_OutputTypepython code
cuBERT_LOGITSmodel.get_pooled_output() * output_weights + output_bias
cuBERT_PROBSprobs = tf.nn.softmax(logits, axis=-1)
cuBERT_POOLED_OUTPUTmodel.get_pooled_output()
cuBERT_SEQUENCE_OUTPUTmodel.get_sequence_output()
cuBERT_EMBEDDING_OUTPUTmodel.get_embedding_output()

Build from Source

mkdir build && cd build
# if build with CUDA
cmake -DCMAKE_BUILD_TYPE=Release -DcuBERT_ENABLE_GPU=ON -DCUDA_ARCH_NAME=Common ..
# or build with MKL
cmake -DCMAKE_BUILD_TYPE=Release -DcuBERT_ENABLE_MKL_SUPPORT=ON ..
make -j4

# install to /usr/local
# it will also install MKL if -DcuBERT_ENABLE_MKL_SUPPORT=ON
sudo make install

If you would like to run tfBERT_benchmark for performance comparison, please first install tensorflow C API from https://www.tensorflow.org/install/lang_c.

Run Unit Test

Download BERT test model bert_frozen_seq32.pb and vocab.txt from Dropbox, and put them under dir build before run make test or ./cuBERT_test.

Python

We provide simple Python wrapper by Cython, and it can be built and installed after C++ building as follows:

cd python
python setup.py bdist_wheel

# install
pip install dist/cuBERT-xxx.whl

# test
python cuBERT_test.py

Please check the Python API usage and examples at cuBERT_test.py for more details.

Java

Java wrapper is implemented through JNA . After installing maven and C++ building, it can be built as follows:

cd java
mvn clean package # -DskipTests

When using Java JAR, you need to specify jna.library.path to the location of libcuBERT.so if it is not installed to the system path. And jna.encoding should be set to UTF8 as -Djna.encoding=UTF8 in the JVM start-up script.

Please check the Java API usage and example at ModelTest.java for more details.

Install

Pre-built python binary package (currently only with MKL on Linux) can be installed as follows:

Dependency

Protobuf

cuBERT is built with protobuf-c to avoid version and code conflicting with tensorflow protobuf.

CUDA

Libraries compiled by CUDA with different versions are not compatible.

MKL

MKL is dynamically linked. We install both cuBERT and MKL in sudo make install.

Threading

We assume the typical usage case of cuBERT is for online serving, where concurrent requests of different batch_size should be served as fast as possible. Thus, throughput and latency should be balanced, especially in pure CPU environment.

As the vanilla class Bert is not thread-safe because of its internal buffers for computation, a wrapper class BertM is written to hold locks of different Bert instances for thread safety. BertM will choose one underlying Bert instance by a round-robin manner, and consequence requests of the same Bert instance might be queued by its corresponding lock.

GPU

One Bert is placed on one GPU card. The maximum concurrent requests is the number of usable GPU cards on one machine, which can be controlled by CUDA_VISIBLE_DEVICES if it is specified.

CPU

For pure CPU environment, it is more complicate than GPU. There are 2 level of parallelism:

  1. Request level. Concurrent requests will compete CPU resource if the online server itself is multi-threaded. If the server is single-threaded (for example some server implementation in Python), things will be much easier.

  2. Operation level. The matrix operations are parallelized by OpenMP and MKL. The maximum parallelism is controlled by OMP_NUM_THREADS, MKL_NUM_THREADS, and many other environment variables. We refer our users to first read Using Threaded IntelĀ® MKL in Multi-Thread Application and Recommended settings for calling Intel MKL routines from multi-threaded applications .

Thus, we introduce CUBERT_NUM_CPU_MODELS for better control of request level parallelism. This variable specifies the number of Bert instances created on CPU/memory, which acts same like CUDA_VISIBLE_DEVICES for GPU.

In summary, OMP_NUM_THREADS or MKL_NUM_THREADS defines how many threads one model could use, and CUBERT_NUM_CPU_MODELS defines how many models in total.

Again, the per request latency and overall throughput should be balanced, and it diffs from model seq_length, batch_size, your CPU cores, your server QPS, and many many other things. You should take a lot benchmark to achieve the best trade-off. Good luck!

Authors