Home

Awesome

MarineInst20M

The official dataset repository of "MarineInst: A Foundation Model for Marine Image Analysis with Instance Visual Description". ECCV 2024.

πŸ“’ News

[July.10 2024] We release our MarineInst20M dataset and corresponding codes to reproduce our annotations!

[July.2 2024] MarineInst is accepted by ECCV 2024 with two Strong Accept.

Dataset construction flow

Dataset construction flow:

<p align="center"> <img src="figs/dataset_flow.png" width="100%"></a> <br> Dataset construction flow of our MarineInst20M. </p>

Dataset statistics:

<p align="center"> <img src="figs/statistics.jpg" width="100%"></a> <br> Statistics of each component in our MarineInst20M. </p>

Key Contributions:

Potential applications of MarineInst20M dataset:

The directory structure of our MarineInst20M should be this:

β”œβ”€β”€MarineInst20M
   β”œβ”€β”€ Flickr
       β”œβ”€β”€ Human-annotated
       └── Model-generated # image urls and annotations
   β”œβ”€β”€ Shutterstock
       β”œβ”€β”€ Human-annotated
       └── Model-generated 
   β”œβ”€β”€ Gettyimages
       β”œβ”€β”€ Human-annotated
       └── Model-generated
   β”œβ”€β”€ Private_Data # our private data and images from YouTube or Webimages
       β”œβ”€β”€ YouTube_data 
       └── Webimages
       └── ...
   β”œβ”€β”€ Public_Datasets # we convert the annotations of existing public datasets to masks
       β”œβ”€β”€ DeepFish 
       └── IOCFish5K
       └── ...
   β”œβ”€β”€ Public_Websites # we provide the urls and corresponding annotations for images from public websites
       β”œβ”€β”€ EOL
       └── FishDB
       └── ...

We provide corresponding README file under each folder to provide more information. We provide the details and corresponding jsons for constructing our MarineInst20M. Please note that we provide the instance mask annotation in COCO RLE format.

Acknowledgement

Citation

If you find our work useful in your research, please consider citing:

@article{ziqiang2024marineinst,
  title={MarineInst: A Foundation Model for Marine Image Analysis with Instance Visual Description},
  author={Ziqiang Zheng, Yiwe Chen, Huimin Zeng, Tuan-Anh Vu, Binh-Son Hua, Sai-Kit Yeung},
  journal={European Conference on Computer Vision (ECCV)},
  year={2024},
  publisher={Springer}
}