Awesome
Adversarial Attack for NLP
This is the official repo of our COLING 2020 Paper: A Geometry-Inspired Attack for Generating Natural Language Adversarial Examples.
Example Usage
Training
python main.py --batch_size 500 --model lstm --max_steps 600 --dataset imdb --hidden_size 128 --embedding glove.6B --vocab_size 60000 --embedding_size 100 --num_worker 0
Adv Training
python main.py --adv --perturb_correct --n_samples_to_disk -1 --batch_size 250 --max_steps 600 --max_loops 100 --model lstm --dataset imdb --hidden_size 128 --embedding glove.6B --vocab_size 60000 --embedding_size 100 --num_worker 0 --attack deepfool --load_model --model_path experiments/baseline/saved_models/imdb_lstm_esize_100_glove.6B_u_lr_0.001_h_128_bt_1000_s_600/9.pth
Attack
python main.py --max_loops 50 --perturb_correct --n_samples_to_disk -1 --batch_size 250 --model lstm --max_steps 600 --dataset imdb --hidden_size 128 --embedding glove.6B --vocab_size 60000 --embedding_size 100 --num_worker 0 --attack deepfool --load_model --model_path experiments/baseline/saved_models/imdb_lstm_esize_100_glove.6B_u_lr_0.001_h_128_bt_1000_s_600/9.pth
Details of commandline options in models/train.py
.
Citation
@inproceedings{meng2020geometry,
title={A Geometry-Inspired Attack for Generating Natural Language Adversarial Examples},
author={Meng, Zhao and Wattenhofer, Roger},
booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
pages={6679--6689},
year={2020}
}