Home

Awesome

<div align="center"> <img src="assets/ADer_git_1024.png" width="30%" /> </div>

๐Ÿ‰ News

๐Ÿ’ก Property


๐Ÿ› ๏ธ Getting Started

Installation

Dataset Preparation

Please refer to Datasets Description for preparing visual AD datasets as needed.

Train (Multi-class Unsupervised AD setting by default, MUAD)

Test

Visualization

How to Build a Custom Approach

  1. Add a model config cfg_model_MODEL_NAME to configs/__base__
  2. Add configs to configs/MODEL_NAME/CFG.py for training and testing.
  3. Add a model implementation file model/MODEL_NAME.py
  4. Add a trainer implementation file trainer/MODEL_NAME_trainer.py
  5. (Optional) Add specific files to data, loss, optim, etc.

๐Ÿ“œ MUAD Results on Popular AD Datasets

MVTec AD

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD97.599.197.390.797.045.150.422.437.513.934.298.064.124.682.4log & weight
DiAD97.299.096.590.796.852.655.519.540.712.021.397.668.324.184.0log & weight
ViTAD98.399.497.391.497.755.358.730.940.820.442.698.370.630.785.4log & weight
InvAD98.999.698.194.198.257.660.134.646.923.043.798.972.034.886.7log & weight
InvAD-lite98.299.297.297.355.058.192.732.647.121.341.798.268.633.785.4log & weight

VisA

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD88.890.885.885.598.333.739.017.947.110.925.788.457.025.374.5log & weight
DiAD86.888.385.175.296.026.133.013.246.28.016.286.751.722.570.1log & weight
ViTAD90.591.786.385.198.236.641.121.638.213.527.689.558.724.475.6log & weight
InvAD95.595.892.192.598.943.147.028.045.617.932.794.563.030.580.7log & weight
InvAD-lite94.995.290.898.640.344.392.525.844.216.130.093.659.028.779.5log & weight

COCO-AD

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD56.249.061.831.765.412.919.46.626.33.711.155.732.612.242.3log & weight
DiAD59.053.063.230.868.120.514.29.631.16.111.658.434.215.644.1log & weight
ViTAD69.360.464.941.078.327.931.912.437.47.219.864.946.019.053.4log & weight
InvAD65.957.864.144.973.219.725.412.437.57.115.262.639.419.050.1log & weight
InvAD-lite64.756.763.570.518.323.438.211.234.26.413.861.626.617.347.9log & weight

MVTec 3D-AD (RGB)

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD78.993.491.488.196.521.228.012.243.67.016.887.948.620.971.1log & weight
DiAD84.694.895.687.896.425.332.35.071.42.65.491.751.326.373.8log & weight
ViTAD79.093.191.891.698.227.333.317.245.310.020.588.052.924.173.5log & weight
InvAD86.195.893.294.798.837.842.522.050.513.227.591.759.728.678.4log & weight
InvAD-lite85.395.293.098.637.241.494.121.655.312.926.591.257.630.077.8log & weight

Uni-Medical

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD78.575.276.696.437.640.285.013.337.88.026.876.854.319.769.9log & weight
DiAD85.184.581.285.495.938.035.619.057.611.425.083.656.529.372.2log & weight
ViTAD82.281.080.197.249.949.686.118.636.511.735.181.161.922.375.2log & weight
InvAD82.279.680.697.447.547.189.621.845.213.833.380.861.426.974.9log & weight
InvAD-lite79.578.379.196.440.140.485.518.340.511.227.679.055.323.371.3log & weight

Real-IAD

MethodmAU-ROC<sub>I</sub>mAP<sub>I</sub>mF1-max<sub>I</sub><span style="color:red">mAU-PRO<sub>R</sub></span>mAU-ROC<sub>P</sub>mAP<sub>P</sub>mF1-max<sub>P</sub>mF1<sub>P/.2/.8</sub>mAcc<sub>P/.2/.8</sub>mIoU<sub>P/.2/.8</sub><span style="color:red">mIoU-max<sub>P</sub></span><span style="color:red">mAD<sub>I</sub></span><span style="color:red">mAD<sub>P</sub></span><span style="color:red">mAD<sub>.2/.8</sub></span><span style="color:red">mAD</span><span style="color:blue">Download</span>
UniAD82.980.874.497.422.930.386.410.535.06.018.379.446.517.267.9log & weight
DiAD75.666.469.958.188.02.97.12.941.91.53.770.632.715.452.6log & weight
ViTAD82.780.173.797.324.232.383.913.427.37.719.678.846.816.167.8log & weight
InvAD89.086.479.698.430.737.691.917.736.110.423.585.053.421.473.4log & weight
InvAD-lite87.285.177.898.131.637.991.617.636.810.323.783.353.721.672.7log & weight

Citation

If you use this toolbox or benchmark in your research, please cite our related works.

@article{ader,
  title={ADer: A Comprehensive Benchmark for Multi-class Visual Anomaly Detection},
  author={Jiangning Zhang and Haoyang He and Zhenye Gan and Qingdong He and Yuxuan Cai and Zhucun Xue and Yabiao Wang and Chengjie Wang and Lei Xie and Yong Liu},
  journal={arXiv preprint arXiv:2406.03262},
  year={2024}
}

@inproceedings{realiad,
  title={Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection},
  author={Wang, Chengjie and Zhu, Wenbing and Gao, Bin-Bin and Gan, Zhenye and Zhang, Jianning and Gu, Zhihao and Qian, Shuguang and Chen, Mingang and Ma, Lizhuang},
  booktitle={CVPR},
  year={2024}
}

@article{vitad,
  title={Exploring Plain ViT Reconstruction for Multi-class Unsupervised Anomaly Detection},
  author={Zhang, Jiangning and Chen, Xuhai and Wang, Yabiao and Wang, Chengjie and Liu, Yong and Li, Xiangtai and Yang, Ming-Hsuan and Tao, Dacheng},
  journal={arXiv preprint arXiv:2312.07495},
  year={2023}
}

@article{invad,
  title={Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark},
  author={Jiangning Zhang and Chengjie Wang and Xiangtai Li and Guanzhong Tian and Zhucun Xue and Yong Liu and Guansong Pang and Dacheng Tao},
  journal={arXiv preprint arXiv:2404.10760},
  year={2024}
}

@article{mambaad,
  title={MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection},
  author={He, Haoyang and Bai, Yuhu and Zhang, Jiangning and He, Qingdong and Chen, Hongxu and Gan, Zhenye and Wang, Chengjie and Li, Xiangtai and Tian, Guanzhong and Xie, Lei},
  year={2024}
}