Home

Awesome

PyTorch-Style-Transfer

This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation.

Tabe of content

MSG-Net

<table width="100%" border="0" cellspacing="15" cellpadding="0"> <tbody> <tr> <td> <b>Multi-style Generative Network for Real-time Transfer</b> [<a href="https://arxiv.org/pdf/1703.06953.pdf">arXiv</a>] [<a href="http://computervisionrutgers.github.io/MSG-Net/">project</a>] <br> <a href="http://hangzh.com/">Hang Zhang</a>, <a href="http://eceweb1.rutgers.edu/vision/dana.html">Kristin Dana</a> <pre> @article{zhang2017multistyle, title={Multi-style Generative Network for Real-time Transfer}, author={Zhang, Hang and Dana, Kristin}, journal={arXiv preprint arXiv:1703.06953}, year={2017} } </pre> </td> <td width="440"><a><img src ="https://raw.githubusercontent.com/zhanghang1989/MSG-Net/master/images/figure1.jpg" width="420px" border="1"></a></td> </tr> </tbody> </table>

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model
    git clone git@github.com:zhanghang1989/PyTorch-Style-Transfer.git
    cd PyTorch-Style-Transfer/experiments
    bash models/download_model.sh
    
  2. Camera Demo
    python camera_demo.py demo --model models/21styles.model
    
  3. Test the model
    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
    

<img src ="images/1.jpg" width="260px" /> <img src ="images/2.jpg" width="260px" /> <img src ="images/3.jpg" width="260px" /> <img src ="images/4.jpg" width="260px" /> <img src ="images/5.jpg" width="260px" /> <img src ="images/6.jpg" width="260px" /> <img src ="images/7.jpg" width="260px" /> <img src ="images/8.jpg" width="260px" /> <img src ="images/9.jpg" width="260px" />

Train Your Own MSG-Net Model

  1. Download the COCO dataset
    bash dataset/download_dataset.sh
    
  2. Train the model
    python main.py train --epochs 4
    

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg

<img src ="images/g1.jpg" width="260px" /> <img src ="images/g2.jpg" width="260px" /> <img src ="images/g3.jpg" width="260px" /> <img src ="images/g4.jpg" width="260px" /> <img src ="images/g5.jpg" width="260px" /> <img src ="images/g6.jpg" width="260px" /> <img src ="images/g7.jpg" width="260px" /> <img src ="images/g8.jpg" width="260px" /> <img src ="images/g9.jpg" width="260px" />

Acknowledgement

The code benefits from outstanding prior work and their implementations including: