Home

Awesome

Structured Outdoor Architecture Reconstruction by Exploration and Classification

Fuyang Zhang, Xiang Xu, Nelson Nauata, Yasutaka Furukawa.

[arXiv] [Project Page] [Bibtex]

In ICCV 2021

<img src="images/teaser.png" width="2000">

Prerequisites

Dependencies

Install additional dependencies:

$ pip install -r requirements.txt

Data

Download the processed data from this link. This includes the original cities dataset from "Vectorizing World Buildings: Planar Graph Reconstruction by Primitive Detection and Relationship Classification" and predictions from Conv-MPN, IP and Per-Edge models.

Download the pretrained heatmap weights from this link.

Both data are required for training and evaluation, unzip and move them to the data folder.

Running the Code

Training

python train_evaluators.py

This will start both the train and search threads.

You can change settings like beam search depth or number of training epochs in the config.py.

Evaluation

First, perform beam search over all the test data:

python search_result.py

Then, evaluate the scores for all searched results:

python metric_for_result.py

Pretrained models

Download individual pretrained model and its beam search results.

Training DatasetModel WeightsBeam Search Results
Conv-MPNconvmpn_weights.zipconvmpn_beamsearch.zip
IPip_weights.zipip_beamsearch.zip
Per-Edgeperedge_weights.zipperedge_beamsearch.zip

<a name="Citing"></a>Citation

If you find this code helpful, please consider citing:

@InProceedings{zhang2021structured,
      title={Structured Outdoor Architecture Reconstruction by Exploration and Classification}, 
      author={Fuyang Zhang and Xiang Xu and Nelson Nauata and Yasutaka Furukawa},
      year={2021},
      eprint={2108.07990},
      archivePrefix={International Conference on Computer Vision (ICCV)},
      primaryClass={cs.CV}
}

Contact

If you have any questions, please contact fuyangz@sfu.ca or xuxiangx@sfu.ca

Acknowledgement

This research is partially supported by NSERC Discovery Grants with Accelerator Supplements and DND/NSERC Discovery Grant Supplement.