Awesome
<div align="center">Point Cloud Mamba: Point Cloud Learning via State Space Model
Tao Zhang, Haobo Yuan, Lu Qi, Jiangning Zhang, Qianyu Zhou, Shunping Ji, Shuicheng Yan, Xiangtai Li
</div>News
- PCM is finally accepted by AAAI-2025.
- All codes and weights are available at SkyworkAI/PointCloudMamba.
Features
- PCM introduces Mamba to point cloud analysis.
- PCM can perform global modeling while maintaining linear computational complexity.
- PCM outperforms PointNeXt on the ScanObjectNN, ModelNet40, and ShapeNetPart datasets.
Demos
ShapeNetPart
<img src="https://github.com/zhang-tao-whu/paper_images/blob/master/pcm/pcm-demo.png" width="800"/>Performance
3-D Point Cloud Classification
<img src="https://github.com/zhang-tao-whu/paper_images/blob/master/pcm/pcm-exp-1.png" width="600"/>3-D Point Cloud Segmentation
<img src="https://github.com/zhang-tao-whu/paper_images/blob/master/pcm/pcm-exp-2.png" width="500"/>@article{zhang2024point,
title={Point Cloud Mamba: Point Cloud Learning via State Space Model},
author={Zhang, Tao and Yuan, Haobo and Qi, Lu and Zhanng, Jiangning and Zhou, Qianyu and Ji, Shunping and Yan, Shuicheng and Li, Xiangtai},
journal={AAAI},
year={2025}
}
License
MIT License