Awesome
Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification
Use vgg16 and SAFF for small sample classification from the paper.
Introduction
- Extract dataset features using pretrained vgg16
- SAFF converts features into 1D tensor
Environmental preparation
conda create -n zh python=3.9
conda activate zh
python3 -m pip install --upgrade pip
pip3 install -r requirements.txt
Run
If your dataset is at path /hy-tmp/data Suppose you want to train on the UC dataset.
- Feature extraction
python run.py
--data_path /hy-tmp/data
--extract
--dataset UC
- Train & verify
python run.py
--data_path /hy-tmp/data
--train
--dataset UC
--ratio 0.8
Experimental results
dataset | train_ratio | acc |
---|---|---|
NWPU | 0.1 | 66.49 |
NWPU | 0.2 | 73.13 |
UC | 0.8 | 92.5 |
SAR | 0.8 | 89.8 |