Home

Awesome

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

This repository contains pre-trained models and sampling code for the 3D Generative Adversarial Network (3D-GAN) presented at NIPS 2016.

http://3dgan.csail.mit.edu

<img src="http://3dgan.csail.mit.edu/images/results.jpg">

Prerequisites

Torch

We use Torch 7 (http://torch.ch) for our implementation with these additional packages:

Visualization

Note: for advanced visualization, the version of vtk has to be 5.10.1, not above. It is available in the package list of common Python distributions like Anaconda

Installation

Our current release has been tested on Ubuntu 14.04.

Cloning the repository

git clone git@github.com:zck119/3dgan-release.git
cd 3dgan-release

Downloading pretrained models

For CPU (947 MB):

./download_models_cpu.sh

For GPU (618 MB):

./download_models_gpu.sh

Downloading latent vector inputs for demo

./download_demo_inputs.sh

Guide

Synthesizing shapes (main.lua)

We show how to synthesize shapes with our pre-trained models. The file (main.lua) has the following options.

Usages include

th main.lua -gpu 0 -class chair 
th main.lua -gpu 1 -class desk -bs 50 -sample -ss 150 
th main.lua -gpu 1 -class all -bs 50 -sample -ss 150 

The output is saved under folder ./output, with class_name_demo.mat for shapes generated by predetermined demo inputs (z in our paper), and class_name_sample.mat for randomly sampled 3D shapes. The variable inputs in the .mat file correponds to the input latent representation, and the variable voxels corresponds to the generated 3D shapes by our network.

Visualization

We offer two ways of visualizing results, one in MATLAB and the other in Python. We used the Python visualization in our paper. The MATLAB visualization is easier to install and run, but its output has a lower quality compared with the Python one.

MATLAB: Please use the function visualization/matlab/visualize.m for visualization. The MATLAB code allows users to either display rendered objects or save them as images. The script also supports downsampling and thresholding for faster rendering. The color of voxels represents the confidence value.

Options include

Usage (after running th main.lua -gpu 0 -class chair, in MATLAB, in folder visualization/matlab):

visualize('../../output/chair_demo.mat', 0, 2, 0.1, 'chair')

The visualization might take a while. The obtained rendering (chair_1/3/4/5.bmp) should look as follows.

<table> <tr> <td><img src="http://3dgan.csail.mit.edu/images/chair_1.jpg" width="210"></td> <td><img src="http://3dgan.csail.mit.edu/images/chair_3.jpg" width="210"></td> <td><img src="http://3dgan.csail.mit.edu/images/chair_4.jpg" width="210"></td> <td><img src="http://3dgan.csail.mit.edu/images/chair_5.jpg" width="210"></td> </tr> </table>

Python: Options for the Python visualization include

Usage:

python visualize.py chair_demo.mat -u 0.9 -t 0.1 -i 1 -mc 2

Reference

@inproceedings{3dgan,
  title={{Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling}},
  author={Wu, Jiajun and Zhang, Chengkai and Xue, Tianfan and Freeman, William T and Tenenbaum, Joshua B},
  booktitle={Advances In Neural Information Processing Systems},
  pages={82--90},
  year={2016}
}

For any questions, please contact Jiajun Wu (jiajunwu@mit.edu) and Chengkai Zhang (ckzhang@mit.edu).