Awesome
SCD-SAM
- The pytorch implementation for SCD-SAM in paper "SCD-SAM: Adapting Segment Anything Model for Semantic Change Detection in Remote Sensing Imagery".
Requirements
- Python 3.6
- Pytorch 1.7.0
Datasets Preparation
The path list in the datasest folder is as follows:
|—train
-
||—A
-
||—B
-
||—labelA
-
||—labelB
|—test
-
||—A
-
||—B
-
||—labelA
-
||—labelB
where A contains pre-temporal images, B contains post-temporal images, labelA contains pre-temporal ground truth images, and labelB contains post-temporal ground truth images.
Train
- python train.py --dataset-dir dataset-path
Test
- python eval.py --ckp-paths weight-path --dataset-dir dataset-path
Visualization
- python visualization visualization.py --ckp-paths weight-path --dataset-dir dataset-path (Note that batch-size must be 1 when using visualization.py)