Awesome
S³FD: Single Shot Scale-invariant Face Detector
A PyTorch Implementation of Single Shot Scale-invariant Face Detector
Description
Meanwhile train hand and head with S3FD,hand dataset is Egohands Dataset,head dataset is SCUT-HEAD,we can download hand model and face model
Requirement
- pytorch 0.3
- opencv
- numpy
- easydict
Prepare data
- download WIDER face dataset、Egohands dataset and SCUT-HEAD
- modify data/config.py
python prepare_wider_data.py
4python prepare_handataset.py
Train
We can choose different dataset to train different target[face,head,hand]
python train.py --batch_size 4 --dataset face\hand\head
Evalution
according to yourself dataset path,modify data/config.py
- Evaluate on AFW.
python afw_test.py
- Evaluate on FDDB
python fddb_test.py
- Evaluate on PASCAL face
python pascal_test.py
- test on WIDER FACE
python wider_test.py
Demo
you can test yourself image
python demo.py
Result
- AFW PASCAL FDDB
AFW AP=99.81 paper=99.85
PASCAL AP=98.77 paper=98.49
FDDB AP=0.975 paper=0.983
WIDER FACE:
Easy AP=0.925 paper = 0.927
Medium AP=0.925 paper = 0.924
Hard AP=0.854 paper = 0.852
2. demo
<div align="center"> <img src="https://github.com/yxlijun/S3FD.pytorch/blob/master/tmp/test2.jpg" height="400px" alt="afw" > </div>