Awesome
Counterfactual Zero-Shot and Open-Set Visual Recognition
This project provides implementations for our CVPR 2021 paper Counterfactual Zero-Shot and Open-Set Visual Recognition, where we propose a counterfactual-based binary seen/unseen classifier (GCM-CF) for Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR). This repo contains
- ZSL: Strong binary seen/unseen classifier that is plug-and-play with any ZSL method
- ZSL: Integrations with TF-VAEGAN, RelationNet, GDAN, CADA-VAE, LisGAN, AREN
- OSR: Complete the OSR code base on MNIST, SVHN, CIFAR10, CIFAR+10, CIFAR+50 with 5 fixed random seed
- OSR: Strong baseline (F1 score) of Softmax, OpenMax, CGDL
- OSR: Implementation of our GCM-CF
Counterfactual Zero-Shot and Open-Set Visual Recognition <br /> Zhongqi Yue*, Tan Wang*, Hanwang Zhang, Qianru Sun, Xian-Sheng Hua <br /> * Equal contribution <br /> IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021 <br />
<div align="center"> <img src="https://github.com/Wangt-CN/gcm-cf/blob/main/osr/images/GCM_CF.png" width="500px" /> </div>Usage
Please refer to the README.md in ZSL and OSR folder, respectively.
TODO
Citation
If you find our work or the code useful, please consider cite our paper using:
@inproceedings{yue2021counterfactual,
title={Counterfactual Zero-Shot and Open-Set Visual Recognition},
author={Yue, Zhongqi and Wang, Tan and Zhang, Hanwang and Sun, Qianru and Hua, Xian-Sheng},
booktitle= {CVPR},
year={2021}
}