Awesome
Fool your (V)LLMs
Code for paper: Fool Your (Vision and) Language Model With Embarrassingly Simple Permutations
Content
Environment
conda create -n MCQ python=3.9
conda activate MCQ
pip install -r requirements.txt
Additionally, please refer to LLaVA and mPLUG-Owl repo for specific installation.
Data
For language task, download MMLU dataset from here and put it in data/MMLU/
directory.
For vision-language task, download ScienceQA dataset from here and put it in data/ScienceQA/
directory. Follow data/preprocess_ScienceQA.ipynb
for preprocessing. Only questions with image input are used.
Usage
LLM MCQ
- Original option order:
python LLMs_attack.py --data_dir ./data/MMLU/ --engine vicuna7b
- Permute option orders:
python LLMs_attack.py --data_dir ./data/MMLU/ --engine vicuna7b --permutation_attack
- Reduce the number of options:
python LLMs_attack.py --data_dir ./data/MMLU/ --engine vicuna7b --n_reduced 2
- Reduce the number of options and then permute:
python LLMs_attack.py --data_dir ./data/MMLU/ --engine vicuna7b --n_reduced 2 --reduce_attack
- Move all ground-truth answers to certain position:
python LLMs_attack.py --data_dir ./data/MMLU/ --engine vicuna7b --position_permute
VLLM MCQ
- Original option order:
python VLLMs_attack.py --data_dir ./data/ScienceQA/ --engine instructblip7b
- Permute option orders:
python VLLMs_attack.py --data_dir ./data/ScienceQA/ --engine instructblip7b --permutation_attack
- Reduce the number of options:
python VLLMs_attack.py --data_dir ./data/ScienceQA/ --engine instructblip7b --n_reduced 2
- Reduce the number of options and then permute:
python VLLMs_attack.py --data_dir ./data/ScienceQA/ --engine instructblip7b --n_reduced 2 --reduce_attack
- Move all ground-truth answers to certain position:
python VLLMs_attack.py --data_dir ./data/ScienceQA/ --engine instructblip7b --position_permute
Arguments:
--ntrain
: number of in-context demonstrations.--data_dir
: path to the dataset.--engine
: which model to use (can use multiple).--n_reduced
: specifies the reduced total number of options.--reduce_attack
: permute the options after reduction.--use_subset
: use subset to test.--permutation_attack
: adversarial permutation to the options.--position_permute
: move all GT answers to certain position (A/B/C/D).--load_in_8bit
: (optional) 8 bit loading to fit large models into GPU memory.
Citation
@article{zong2023fool,
title={Fool Your (Vision and) Language Model With Embarrassingly Simple Permutations},
author={Zong, Yongshuo and Yu, Tingyang and Zhao, Bingchen and Chavhan, Ruchika and Hospedales, Timothy},
journal={arXiv preprint arXiv:2310.01651},
year={2023}
}