Awesome
Diffusion-Models-for-Medical-Imaging
Diffusion Models for Medical Imaging <font size=5>[Diffusion model in projection data (PPT)]</font>
Learning from DAE to DSM
<div align="center"><img src="https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging/blob/main/Learning-from-DAE-to-DSM2.png" width = "800" height = "500"> </div>-
Highly Undersampled Magnetic Resonance Imaging Reconstruction using Autoencoding Priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[Slide]</font> <font size=5>[数学图像联盟会议交流PPT]</font> -
High-dimensional Embedding Network Derived Prior for Compressive Sensing MRI Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Denoising Auto-encoding Priors in Undecimated Wavelet Domain for MR Image Reconstruction
<font size=5>[Paper]</font> <font size=5>[Paper]</font> <font size=5>[Code]</font> -
REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[PPT]</font> <font size=5>[数学图像联盟会议交流PPT]</font> -
Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[PPT]</font> -
Wavelet-improved Score-based Generative Model for Medical Imaging
<font size=5>[Paper]</font> -
基于分数匹配生成模型的无透镜成像方法
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[CIIS 2023-PPT]</font> -
Imaging through scattering media via generative diffusion model
<font size=5>[Paper]</font> <font size=5>[Code]</font>
Learning from Image Domain to Projection Domain
<div align="center"><img src="https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging/blob/main/Learning-from-Image-Domain-to-K-space2.png" width = "800" height = "500"> </div>-
Homotopic Gradients of Generative Density Priors for MR Image Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[Slide]</font> -
Universal Generative Modeling for Calibration-free Parallel MR Imaging
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[Poster]</font> -
WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[ISMRM_2022_slideliu6]</font> <font size=5>[ISMRM_2022_liu]</font> -
Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Universal Generative Modeling in Dual-domain for Dynamic MR Imaging
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Physics-Informed DeepMRI: k-Space Interpolation Meets Heat Diffusion
<font size=5>[Paper]</font> -
Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Multi-phase FZA lensless imaging via diffusion model
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[CIIS 2023-PPT]</font> -
Generative model for sparse photoacoustic tomography artifact removal
<font size=5>[Paper]</font> -
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
High-resolution iterative reconstruction at extremely low sampling rate for Fourier single-pixel imaging via diffusion model
<font size=5>[Paper]</font> <font size=5>[Code]</font>
Learning from Large to Small Dataset
<div align="center"><img src="https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging/blob/main/Learning-from-Large-to-Small-Dataset2.png" width = "800" height = "500"> </div>-
One-shot Generative Prior in Hankel-k-space for Parallel Imaging Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[PPT]</font> -
One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Generative Modeling in Structural-Hankel Domain for Color Image Inpainting
<font size=5>[Paper]</font> <font size=5>[Code]</font> <font size=5>[CIIS 2023-PPT]</font>
Learning from One to Multiple Models
<div align="center"><img src="https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging/blob/main/Learning-from-Single-to-Multiple-Models2.png" width = "800" height = "500"> </div>-
Stage-by-stage Wavelet Optimization Refinement Diffusion Model for Sparse-view CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Dual-Domain Collaborative Diffusion Sampling for Multi-Source Stationary Computed Tomography Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Diffusion Model based on Generalized Map for Accelerated MRI
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Multiple diffusion models-enhanced extremely limited-view reconstruction strategy for photoacoustic tomography boosted by multi-scale priors
<font size=5>[Paper]</font> <font size=5>[Code]</font>
Learning from Regular to Irregular Samples
<div align="center"><img src="https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging/blob/main/Learning-from-Regular-to-Irregular-Samples2.png" width = "800" height = "500"> </div>-
Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
DP-MDM: Detail-Preserving MR Reconstruction via Multiple Diffusion Models
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction
<font size=5>[Paper]</font> <font size=5>[Code]</font> -
Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning
<font size=5>[Paper]</font> -
Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data
<font size=5>[Paper]</font>