Home

Awesome

CUHK & ETH & SIAT Solution to ActivityNet Challenge 2016

This repository holds the materials necessary to reproduce the results for our solution to ActivityNet Challenge 2016. We won the 1st place in the untrimmed video classification task.

Although initially designed for the challenge, the repository also means to provide an accessible framework for general video classification tasks.

Functionalities & Release Status

Dependencies

The codebase is written in Python. It is recommended to use Anaconda distribution package with it.

Besides, we also use Caffe and OpenCV. Particularly, the OpenCV should be compiled with VideoIO support. GPU support will be good if possible. If you use build_all.sh, it will locally install these dependencies for you.

Requirements

NVIDIA GPU with CUDA support. At least 4GB display memory is needed to run the reference models.

Get the code

Use Git

git clone --recursive https://github.com/yjxiong/anet2016-cuhk

If you happen to forget adding --recursive to the command. You can still go to the project directory and issue

git submodule update --init

Single Video Classification

bash build_all.sh
bash models/get_reference_models.sh
python examples/classify_video.py data/plastering.avi

It should print the top 3 prediction in the output. To use the two-stream model, one can add --use_flow flag to the command. The framework will then extract optical flow on the fly.

python examples/classify_video.py --use_flow data/plastering.avi

You can use your own video files by specifying the filename.

One can also specify a youtube url here to do the classification, for example

python examples/classify_video.py https://www.youtube.com/watch?v=QkuC0lvMAX0

The two-stream model here consists of one reset-200 model for RGB input and one BN-Inception model for optical flow input. The model spec and parameter files can be found in models/.

Web Demo

We also provide a light-weighted demo server. The server uses Flask.

python demo_server.py

It will be run on 127.0.0.1:5000. It supports uploading local files and directly analyzing Youtube-style video urls.

For a quick start, we have set up a public demo server at

Action Recognition Web Demo

The server runs on the Titan X GPU awarded for winning the challenge. Thanks to the organizers!

Related Projects

LICENSE

Released under BSD 2-Clause license.