Home

Awesome

💡 MultiHop-RAG

A Dataset for Evaluating Retrieval-Augmented Generation Across Documents

🚀 Overview

MultiHop-RAG: a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.

📄 Paper Link (Accepted by COLM 2024): MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries
🤗 Hugging Face dataloader

rag.png

Simple Use Case

1. For Retrieval

Please try 'simple_retrieval.py,' a sample use case demonstrating retrieval using this dataset.

pip install llama-index==0.9.40
# test simple retrieval and save results
python simple_retrieval.py --retriever BAAI/llm-embedder

# test simple retrieval with rerank and save results
python simple_retrieval.py --retriever BAAI/llm-embedder --rerank

2. For QA

Please try 'qa_llama.py,' a sample use case demonstrating query and answer with llama using this dataset.

python qa_llama.py

Evaluation

1. For Retrieval: 'retrieval_evaluate.py'

2. For QA: 'qa_evaluate.py'

python retrieval_evaluate.py --file {saved_file_path}

Construction Pipeline

For research purposes, we open-sourced part of the code to construct the dataset. However, the current structure of the code is not very tidy. We will organize it in the future.

💡 Just For Reference: pipeline/

Citation

@misc{tang2024multihoprag,
      title={MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries}, 
      author={Yixuan Tang and Yi Yang},
      year={2024},
      eprint={2401.15391},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

MultiHop-RAG is licensed under ODC-BY