Home

Awesome

APDrawingGAN Jittor Implementation

We provide Jittor implementations for our CVPR 2019 oral paper "APDrawingGAN: Generating Artistic Portrait Drawings from Face Photos with Hierarchical GANs". [Paper]

This project generates artistic portrait drawings from face photos using a GAN-based model.

Prerequisites

Sample Results

Up: input, Down: output

<p> <img src='imgs/samples/img_1701.png' width="19%"/> <img src='imgs/samples/img_1696.png' width="19%"/> <img src='imgs/samples/img_1682.png' width="19%"/> <img src='imgs/samples/img_1794.png' width="19%"/> <img src='imgs/samples/img_1673.png' width="19%"/> </p> <p> <img src='imgs/samples/img_1701_fake_B.png' width="19%"/> <img src='imgs/samples/img_1696_fake_B.png' width="19%"/> <img src='imgs/samples/img_1682_fake_B.png' width="19%"/> <img src='imgs/samples/img_1794_fake_B.png' width="19%"/> <img src='imgs/samples/img_1673_fake_B.png' width="19%"/> </p>

Installation

pip install -r requirements.txt

Apply pretrained model

python test.py

Results are saved in ./results/portrait_drawing/formal_author_300/example

Train

python apdrawing_gan.py

Models are saved in folder checkpoints/apdrawing

python test.py --which_epoch 300 --model_name apdrawing

Results are saved in ./results/portrait_drawing/apdrawing_300/example

Citation

If you use this code or APDrawing dataset for your research, please cite our paper.

@inproceedings{YiLLR19,
  title     = {{APDrawingGAN}: Generating Artistic Portrait Drawings from Face Photos with Hierarchical GANs},
  author    = {Yi, Ran and Liu, Yong-Jin and Lai, Yu-Kun and Rosin, Paul L},
  booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR '19)},
  pages     = {10743--10752},
  year      = {2019}
}