Awesome
STPGCN
This is an implementation of Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting (TITS).
<div align="center"> <img src="STPGCN.png" width = "700" /> </div>Requirements
Mxnet version
- mxnet>=1.5.0
- easydict
Use
nvcc -V
to check the cuda version and install mxnet with the corresponding version. For example, usepip install mxnet-cu101
to install mxnet for cuda version 10.1.
Pytorch version
- torch>=2.0
- easydict
Thanks to Dr. Wen for the pytorch version.
Data
- PEMS: Refer to https://github.com/Davidham3/STSGCN
- Metro:Refer to https://github.com/yijizhao/MR-STN
Usage
- python main.py --rid=1 --seed=1 --L=3 --a=4 --b=2 --d=8 --data=PEMS08 --batch=32 --C=64 --workname=STPGCN-PEMS08
Citing
If our paper benefits to your research, please cite our paper using the bitex below:
@article{STPGCN,
title={Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting},
author={Zhao, Yiji and Lin, Youfang and Wen, Haomin and Wei, Tonglong and Jin, Xiyuan and Wan, Huaiyu},
journal={IEEE Transactions on Intelligent Transportation Systems},
volume={24},
number={8},
pages={8650-8666},
year={2023},
publisher={IEEE}
}