Home

Awesome

中文 | English litellm

bilingual_book_maker

The bilingual_book_maker is an AI translation tool that uses ChatGPT to assist users in creating multi-language versions of epub/txt/srt files and books. This tool is exclusively designed for translating epub books that have entered the public domain and is not intended for copyrighted works. Before using this tool, please review the project's disclaimer.

image

Supported Models

gpt-4, gpt-3.5-turbo, claude-2, palm, llama-2, azure-openai, command-nightly, gemini For using Non-OpenAI models, use class liteLLM() - liteLLM supports all models above. Find more info here for using liteLLM: https://github.com/BerriAI/litellm/blob/main/setup.py

Preparation

  1. ChatGPT or OpenAI token 1
  2. epub/txt books
  3. Environment with internet access or proxy
  4. Python 3.8+

Use

Examples

Note if use pip install bbook_maker all commands can change to bbook_maker args

# Test quickly
python3 make_book.py --book_name test_books/animal_farm.epub --openai_key ${openai_key}  --test --language zh-hans

# Test quickly for src
python3 make_book.py --book_name test_books/Lex_Fridman_episode_322.srt --openai_key ${openai_key}  --test

# Or translate the whole book
python3 make_book.py --book_name test_books/animal_farm.epub --openai_key ${openai_key} --language zh-hans

# Or translate the whole book using Gemini flash
python3 make_book.py --book_name test_books/animal_farm.epub --gemini_key ${gemini_key} --model gemini

# Use a specific list of Gemini model aliases
python3 make_book.py --book_name test_books/animal_farm.epub --gemini_key ${gemini_key} --model gemini --model_list gemini-1.5-flash-002,gemini-1.5-flash-8b-exp-0924

# Set env OPENAI_API_KEY to ignore option --openai_key
export OPENAI_API_KEY=${your_api_key}

# Use the GPT-4 model with context to Japanese
python3 make_book.py --book_name test_books/animal_farm.epub --model gpt4 --use_context --language ja

# Use a specific OpenAI model alias
python3 make_book.py --book_name test_books/animal_farm.epub --model openai --model_list gpt-4-1106-preview --openai_key ${openai_key}

**Note** you can use other `openai like` model in this way
python3 make_book.py --book_name test_books/animal_farm.epub --model openai --model_list yi-34b-chat-0205 --openai_key ${openai_key} --api_base "https://api.lingyiwanwu.com/v1"

# Use a specific list of OpenAI model aliases
python3 make_book.py --book_name test_books/animal_farm.epub --model openai --model_list gpt-4-1106-preview,gpt-4-0125-preview,gpt-3.5-turbo-0125 --openai_key ${openai_key}

# Use the DeepL model with Japanese
python3 make_book.py --book_name test_books/animal_farm.epub --model deepl --deepl_key ${deepl_key} --language ja

# Use the Claude model with Japanese
python3 make_book.py --book_name test_books/animal_farm.epub --model claude --claude_key ${claude_key} --language ja

# Use the CustomAPI model with Japanese
python3 make_book.py --book_name test_books/animal_farm.epub --model customapi --custom_api ${custom_api} --language ja

# Translate contents in <div> and <p>
python3 make_book.py --book_name test_books/animal_farm.epub --translate-tags div,p

# Tweaking the prompt
python3 make_book.py --book_name test_books/animal_farm.epub --prompt prompt_template_sample.txt
# or
python3 make_book.py --book_name test_books/animal_farm.epub --prompt prompt_template_sample.json
# or
python3 make_book.py --book_name test_books/animal_farm.epub --prompt "Please translate \`{text}\` to {language}"

# Translate books download from Rakuten Kobo on kobo e-reader
python3 make_book.py --book_from kobo --device_path /tmp/kobo

# translate txt file
python3 make_book.py --book_name test_books/the_little_prince.txt --test --language zh-hans
# aggregated translation txt file
python3 make_book.py --book_name test_books/the_little_prince.txt --test --batch_size 20

# Using Caiyun model to translate
# (the api currently only support: simplified chinese <-> english, simplified chinese <-> japanese)
# the official Caiyun has provided a test token (3975l6lr5pcbvidl6jl2)
# you can apply your own token by following this tutorial(https://bobtranslate.com/service/translate/caiyun.html)
python3 make_book.py --model caiyun --caiyun_key 3975l6lr5pcbvidl6jl2 --book_name test_books/animal_farm.epub


# Set env BBM_CAIYUN_API_KEY to ignore option --openai_key
export BBM_CAIYUN_API_KEY=${your_api_key}

More understandable example

python3 make_book.py --book_name 'animal_farm.epub' --openai_key sk-XXXXX --api_base 'https://xxxxx/v1'

# Or python3 is not in your PATH
python make_book.py --book_name 'animal_farm.epub' --openai_key sk-XXXXX --api_base 'https://xxxxx/v1'

Microsoft Azure Endpoints

python3 make_book.py --book_name 'animal_farm.epub' --openai_key XXXXX --api_base 'https://example-endpoint.openai.azure.com' --deployment_id 'deployment-name'

# Or python3 is not in your PATH
python make_book.py --book_name 'animal_farm.epub' --openai_key XXXXX --api_base 'https://example-endpoint.openai.azure.com' --deployment_id 'deployment-name'

Docker

You can use Docker if you don't want to deal with setting up the environment.

# Build image
docker build --tag bilingual_book_maker .

# Run container
# "$folder_path" represents the folder where your book file locates. Also, it is where the processed file will be stored.

# Windows PowerShell
$folder_path=your_folder_path # $folder_path="C:\Users\user\mybook\"
$book_name=your_book_name # $book_name="animal_farm.epub"
$openai_key=your_api_key # $openai_key="sk-xxx"
$language=your_language # see utils.py

docker run --rm --name bilingual_book_maker --mount type=bind,source=$folder_path,target='/app/test_books' bilingual_book_maker --book_name "/app/test_books/$book_name" --openai_key $openai_key --language $language

# Linux
export folder_path=${your_folder_path}
export book_name=${your_book_name}
export openai_key=${your_api_key}
export language=${your_language}

docker run --rm --name bilingual_book_maker --mount type=bind,source=${folder_path},target='/app/test_books' bilingual_book_maker --book_name "/app/test_books/${book_name}" --openai_key ${openai_key} --language "${language}"

For example:

# Linux
docker run --rm --name bilingual_book_maker --mount type=bind,source=/home/user/my_books,target='/app/test_books' bilingual_book_maker --book_name /app/test_books/animal_farm.epub --openai_key sk-XXX --test --test_num 1 --language zh-hant

Notes

  1. API token from free trial has limit. If you want to speed up the process, consider paying for the service or use multiple OpenAI tokens
  2. PR is welcome

Thanks

Contribution

Others better

Appreciation

Thank you, that's enough.

image

Footnotes

  1. https://platform.openai.com/account/api-keys

  2. https://github.com/psf/black