Home

Awesome

<!-- PROJECT LOGO --> <p align="center"> <h1 align="center">CR-NeRF: Cross-Ray Neural Radiance Fields for Novel-view Synthesis from Unconstrained Image Collections</h1> <p align="center"> <strong>Yifan Yang</strong></a> · <strong>Shuhai Zhang</strong></a> · <strong>Zixiong Huang</strong></a> · <strong>Yubing Zhang</strong></a> . <strong>Mingkui Tan</strong></a> </p> <h2 align="center">ICCV 2023 Oral</h2> <p align="center"> <br> <a href='https://arxiv.org/abs/2307.08093'> <img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=arXiv&logoColor=green' alt='Paper PDF'> </a> </p> </p> <!-- TABLE OF CONTENTS --> <details open="open" style='padding: 10px; border-radius:5px 30px 30px 5px; border-style: solid; border-width: 1px;'> <summary>Table of Contents</summary> <ol> <li> <a href="#introduction-to-cr-nerf">Introduction to CR-NeRF</a> </li> <li> <a href="#video-demo">Video Demo</a> </li> <li> <a href="#instructions">Instructions</a> </li> <li> <a href="#running-demo">Running Demo</a> </li> <li> <a href="#training-and-testing">Training and testing</a> </li> <li> <a href="#citation">Citation</a> </li> </ol> </details> <br /> <br /> <br>

Introduction-to-CR-NeRF

Pipeline
Pipeline of CR-NeRF

with our CR-NeRF You will get:

For more details of our CR-NeRF, see architecture visualization in our encoder, transformation net, and decoder

<br/> <br>

Video-Demo

Appearance Hallucination


Trevi Fountain

Brandenburg Gate

Cross-Appearance Hallucination


From Trevi Fountain to Brandenburg Gate

From Brandenburg Gate to Trevi Fountain

Appearance Hallucination


Comparison with NeRF-W


<br/> <br>

Instructions

<br/> <br> <br>

Running Demo

Download trained checkpoints from: google drive or Baidu drive password: z6wd

If you want video demo

#Set $scene_name and $save_dir1 and cuda devices in command/get_video_demo.sh
bash command/get_video_demo.sh

The rendered video (in .gif format) will be in path "{$save_dir1}/appearance_modification/{$scene_name}"

If you want images for evaluating metrics

bash command/get_rendered_images.sh

The rendered images will be in path "{$save_dir1}/{$exp_name1}"

Training and testing

#Set experiment name and cuda devices in train.sh 
bash command/train.sh
#Set the experiment name to match the training name, and set cuda devices in test.sh 
bash command/test.sh
<br/> <br/>

Citation

@inproceedings{yang2023cross,
  title={Cross-Ray Neural Radiance Fields for Novel-view Synthesis from Unconstrained Image Collections},
  author={Yang, Yifan and Zhang, Shuhai and Huang, Zixiong and Zhang, Yubing and Tan, Mingkui},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={15901--15911},
  year={2023}
}

Acknowledgments

We thank Dong Liu's help in making the video demo

Here are some great resources we benefit from:

<br>

License

By downloading and using the code and model you agree to the terms in the LICENSE.