Home

Awesome

cpp-peglib

C++17 header-only PEG (Parsing Expression Grammars) library. You can start using it right away just by including peglib.h in your project.

Since this library only supports C++17 compilers, please make sure that the compiler option -std=c++17 is enabled. (/std:c++17 /Zc:__cplusplus for MSVC)

You can also try the online version, PEG Playground at https://yhirose.github.io/cpp-peglib.

The PEG syntax is well described on page 2 in the document by Bryan Ford. cpp-peglib also supports the following additional syntax for now:

'End of Input' check will be done as default. To disable the check, please call disable_eoi_check.

This library supports the linear-time parsing known as the Packrat parsing.

IMPORTANT NOTE for some Linux distributions such as Ubuntu and CentOS: Need -pthread option when linking. See #23, #46 and #62.

I am sure that you will enjoy this excellent "Practical parsing with PEG and cpp-peglib" article by bert hubert!

How to use

This is a simple calculator sample. It shows how to define grammar, associate semantic actions to the grammar, and handle semantic values.

// (1) Include the header file
#include <peglib.h>
#include <assert.h>
#include <iostream>

using namespace peg;
using namespace std;

int main(void) {
  // (2) Make a parser
  parser parser(R"(
    # Grammar for Calculator...
    Additive    <- Multiplicative '+' Additive / Multiplicative
    Multiplicative   <- Primary '*' Multiplicative / Primary
    Primary     <- '(' Additive ')' / Number
    Number      <- < [0-9]+ >
    %whitespace <- [ \t]*
  )");

  assert(static_cast<bool>(parser) == true);

  // (3) Setup actions
  parser["Additive"] = [](const SemanticValues &vs) {
    switch (vs.choice()) {
    case 0: // "Multiplicative '+' Additive"
      return any_cast<int>(vs[0]) + any_cast<int>(vs[1]);
    default: // "Multiplicative"
      return any_cast<int>(vs[0]);
    }
  };

  parser["Multiplicative"] = [](const SemanticValues &vs) {
    switch (vs.choice()) {
    case 0: // "Primary '*' Multiplicative"
      return any_cast<int>(vs[0]) * any_cast<int>(vs[1]);
    default: // "Primary"
      return any_cast<int>(vs[0]);
    }
  };

  parser["Number"] = [](const SemanticValues &vs) {
    return vs.token_to_number<int>();
  };

  // (4) Parse
  parser.enable_packrat_parsing(); // Enable packrat parsing.

  int val;
  parser.parse(" (1 + 2) * 3 ", val);

  assert(val == 9);
}

To show syntax errors in grammar text:

auto grammar = R"(
  # Grammar for Calculator...
  Additive    <- Multiplicative '+' Additive / Multiplicative
  Multiplicative   <- Primary '*' Multiplicative / Primary
  Primary     <- '(' Additive ')' / Number
  Number      <- < [0-9]+ >
  %whitespace <- [ \t]*
)";

parser parser;

parser.set_logger([](size_t line, size_t col, const string& msg, const string &rule) {
  cerr << line << ":" << col << ": " << msg << "\n";
});

auto ok = parser.load_grammar(grammar);
assert(ok);

There are four semantic actions available:

[](const SemanticValues& vs, any& dt)
[](const SemanticValues& vs)
[](SemanticValues& vs, any& dt)
[](SemanticValues& vs)

SemanticValues value contains the following information:

any& dt is a 'read-write' context data which can be used for whatever purposes. The initial context data is set in peg::parser::parse method.

A semantic action can return a value of arbitrary data type, which will be wrapped by peg::any. If a user returns nothing in a semantic action, the first semantic value in the const SemanticValues& vs argument will be returned. (Yacc parser has the same behavior.)

Here shows the SemanticValues structure:

struct SemanticValues : protected std::vector<any>
{
  // Input text
  const char* path;
  const char* ss;

  // Matched string
  std::string_view sv() const { return sv_; }

  // Line number and column at which the matched string is
  std::pair<size_t, size_t> line_info() const;

  // Tokens
  std::vector<std::string_view> tokens;
  std::string_view token(size_t id = 0) const;

  // Token conversion
  std::string token_to_string(size_t id = 0) const;
  template <typename T> T token_to_number() const;

  // Choice number (0 based index)
  size_t choice() const;

  // Transform the semantic value vector to another vector
  template <typename T> vector<T> transform(size_t beg = 0, size_t end = -1) const;
}

The following example uses < ... > operator, which is token boundary operator.

peg::parser parser(R"(
  ROOT  <- _ TOKEN (',' _ TOKEN)*
  TOKEN <- < [a-z0-9]+ > _
  _     <- [ \t\r\n]*
)");

parser["TOKEN"] = [](const SemanticValues& vs) {
  // 'token' doesn't include trailing whitespaces
  auto token = vs.token();
};

auto ret = parser.parse(" token1, token2 ");

We can ignore unnecessary semantic values from the list by using ~ operator.

peg::parser parser(R"(
  ROOT  <-  _ ITEM (',' _ ITEM _)*
  ITEM  <-  ([a-z0-9])+
  ~_    <-  [ \t]*
)");

parser["ROOT"] = [&](const SemanticValues& vs) {
  assert(vs.size() == 2); // should be 2 instead of 5.
};

auto ret = parser.parse(" item1, item2 ");

The following grammar is the same as the above.

peg::parser parser(R"(
  ROOT  <-  ~_ ITEM (',' ~_ ITEM ~_)*
  ITEM  <-  ([a-z0-9])+
  _     <-  [ \t]*
)");

Semantic predicate support is available with a predicate action.

peg::parser parser("NUMBER  <-  [0-9]+");

parser["NUMBER"] = [](const SemanticValues &vs) {
  return vs.token_to_number<long>();
};

parser["NUMBER"].predicate = [](const SemanticValues &vs,
                                const std::any & /*dt*/, std::string &msg) {
  if (vs.token_to_number<long>() != 100) {
    msg = "value error!!";
    return false;
  }
  return true;
};

long val;
auto ret = parser.parse("100", val);
assert(ret == true);
assert(val == 100);

ret = parser.parse("200", val);
assert(ret == false);

enter and leave actions are also available.

parser["RULE"].enter = [](const Context &c, const char* s, size_t n, any& dt) {
  std::cout << "enter" << std::endl;
};

parser["RULE"] = [](const SemanticValues& vs, any& dt) {
  std::cout << "action!" << std::endl;
};

parser["RULE"].leave = [](const Context &c, const char* s, size_t n, size_t matchlen, any& value, any& dt) {
  std::cout << "leave" << std::endl;
};

You can receive error information via a logger:

parser.set_logger([](size_t line, size_t col, const string& msg) {
  ...
});

parser.set_logger([](size_t line, size_t col, const string& msg, const string &rule) {
  ...
});

Ignoring Whitespaces

As you can see in the first example, we can ignore whitespaces between tokens automatically with %whitespace rule.

%whitespace rule can be applied to the following three conditions:

These are valid tokens:

KEYWORD   <- 'keyword'
KEYWORDI  <- 'case_insensitive_keyword'
WORD      <-  < [a-zA-Z0-9] [a-zA-Z0-9-_]* >    # token boundary operator is used.
IDNET     <-  < IDENT_START_CHAR IDENT_CHAR* >  # token boundary operator is used.

The following grammar accepts one, "two three", four.

ROOT         <- ITEM (',' ITEM)*
ITEM         <- WORD / PHRASE
WORD         <- < [a-z]+ >
PHRASE       <- < '"' (!'"' .)* '"' >

%whitespace  <-  [ \t\r\n]*

Word expression

peg::parser parser(R"(
  ROOT         <-  'hello' 'world'
  %whitespace  <-  [ \t\r\n]*
  %word        <-  [a-z]+
)");

parser.parse("hello world"); // OK
parser.parse("helloworld");  // NG

Capture/Backreference

peg::parser parser(R"(
  ROOT      <- CONTENT
  CONTENT   <- (ELEMENT / TEXT)*
  ELEMENT   <- $(STAG CONTENT ETAG)
  STAG      <- '<' $tag< TAG_NAME > '>'
  ETAG      <- '</' $tag '>'
  TAG_NAME  <- 'b' / 'u'
  TEXT      <- TEXT_DATA
  TEXT_DATA <- ![<] .
)");

parser.parse("This is <b>a <u>test</u> text</b>."); // OK
parser.parse("This is <b>a <u>test</b> text</u>."); // NG
parser.parse("This is <b>a <u>test text</b>.");     // NG

Dictionary

| operator allows us to make a word dictionary for fast lookup by using Trie structure internally. We don't have to worry about the order of words.

START <- 'This month is ' MONTH '.'
MONTH <- 'Jan' | 'January' | 'Feb' | 'February' | '...'

We are able to find which item is matched with choice().

parser["MONTH"] = [](const SemanticValues &vs) {
  auto id = vs.choice();
};

It supports the case-insensitive mode.

START <- 'This month is ' MONTH '.'
MONTH <- 'Jan'i | 'January'i | 'Feb'i | 'February'i | '...'i

Cut operator

operator could mitigate the backtrack performance problem, but has a risk to change the meaning of grammar.

S <- '(' ↑ P ')' / '"' ↑ P '"' / P
P <- 'a' / 'b' / 'c'

When we parse (z with the above grammar, we don't have to backtrack in S after ( is matched, because a cut operator is inserted there.

Parameterized Rule or Macro

# Syntax
Start      ← _ Expr
Expr       ← Sum
Sum        ← List(Product, SumOpe)
Product    ← List(Value, ProOpe)
Value      ← Number / T('(') Expr T(')')

# Token
SumOpe     ← T('+' / '-')
ProOpe     ← T('*' / '/')
Number     ← T([0-9]+)
~_         ← [ \t\r\n]*

# Macro
List(I, D) ← I (D I)*
T(x)       ← < x > _

Parsing infix expression by Precedence climbing

Regarding the precedence climbing algorithm, please see this article.

parser parser(R"(
  EXPRESSION             <-  INFIX_EXPRESSION(ATOM, OPERATOR)
  ATOM                   <-  NUMBER / '(' EXPRESSION ')'
  OPERATOR               <-  < [-+/*] >
  NUMBER                 <-  < '-'? [0-9]+ >
  %whitespace            <-  [ \t]*

  # Declare order of precedence
  INFIX_EXPRESSION(A, O) <-  A (O A)* {
    precedence
      L + -
      L * /
  }
)");

parser["INFIX_EXPRESSION"] = [](const SemanticValues& vs) -> long {
  auto result = any_cast<long>(vs[0]);
  if (vs.size() > 1) {
    auto ope = any_cast<char>(vs[1]);
    auto num = any_cast<long>(vs[2]);
    switch (ope) {
      case '+': result += num; break;
      case '-': result -= num; break;
      case '*': result *= num; break;
      case '/': result /= num; break;
    }
  }
  return result;
};
parser["OPERATOR"] = [](const SemanticValues& vs) { return *vs.sv(); };
parser["NUMBER"] = [](const SemanticValues& vs) { return vs.token_to_number<long>(); };

long val;
parser.parse(" -1 + (1 + 2) * 3 - -1", val);
assert(val == 9);

precedence instruction can be applied only to the following 'list' style rule.

Rule <- Atom (Operator Atom)* {
  precedence
    L - +
    L / *
    R ^
}

precedence instruction contains precedence info entries. Each entry starts with associativity which is 'L' (left) or 'R' (right), then operator literal tokens follow. The first entry has the highest order level.

AST generation

cpp-peglib is able to generate an AST (Abstract Syntax Tree) when parsing. enable_ast method on peg::parser class enables the feature.

NOTE: An AST node holds a corresponding token as std::string_vew for performance and less memory usage. It is users' responsibility to keep the original source text along with the generated AST tree.

peg::parser parser(R"(
  ...
  definition1 <- ... { no_ast_opt }
  definition2 <- ... { no_ast_opt }
  ...
)");

parser.enable_ast();

shared_ptr<peg::Ast> ast;
if (parser.parse("...", ast)) {
  cout << peg::ast_to_s(ast);

  ast = parser.optimize_ast(ast);
  cout << peg::ast_to_s(ast);
}

optimize_ast removes redundant nodes to make an AST simpler. If you want to disable this behavior from particular rules, no_ast_opt instruction can be used.

It internally calls peg::AstOptimizer to do the job. You can make your own AST optimizers to fit your needs.

See actual usages in the AST calculator example and PL/0 language example.

Make a parser with parser combinators

Instead of making a parser by parsing PEG syntax text, we can also construct a parser by hand with parser combinators. Here is an example:

using namespace peg;
using namespace std;

vector<string> tags;

Definition ROOT, TAG_NAME, _;
ROOT     <= seq(_, zom(seq(chr('['), TAG_NAME, chr(']'), _)));
TAG_NAME <= oom(seq(npd(chr(']')), dot())), [&](const SemanticValues& vs) {
              tags.push_back(vs.token_to_string());
            };
_        <= zom(cls(" \t"));

auto ret = ROOT.parse(" [tag1] [tag:2] [tag-3] ");

The following are available operators:

OperatorDescriptionOperatorDescription
seqSequencechoPrioritized Choice
zomZero or MoreoomOne or More
optOptionalapdAnd predicate
npdNot predicatelitLiteral string
litiCase-insensitive Literal stringclsCharacter class
nclsNegated Character classchrCharacter
dotAny charactertokToken boundary
ignIgnore semantic valuecscCapture scope
capCapturebkrBack reference
dicDictionarypreInfix expression
recInfix expressionusrUser defined parser
repRepetition

Adjust definitions

It's possible to add/override definitions.

auto syntax = R"(
  ROOT <- _ 'Hello' _ NAME '!' _
)";

Rules additional_rules = {
  {
    "NAME", usr([](const char* s, size_t n, SemanticValues& vs, any& dt) -> size_t {
      static vector<string> names = { "PEG", "BNF" };
      for (const auto& name: names) {
        if (name.size() <= n && !name.compare(0, name.size(), s, name.size())) {
          return name.size(); // processed length
        }
      }
      return -1; // parse error
    })
  },
  {
    "~_", zom(cls(" \t\r\n"))
  }
};

auto g = parser(syntax, additional_rules);

assert(g.parse(" Hello BNF! "));

Unicode support

cpp-peglib accepts UTF8 text. . matches a Unicode codepoint. Also, it supports \u????.

Error report and recovery

cpp-peglib supports the furthest failure error position report as described in the Bryan Ford original document.

For better error report and recovery, cpp-peglib supports 'recovery' operator with label which can be associated with a recovery expression and a custom error message. This idea comes from the fantastic "Syntax Error Recovery in Parsing Expression Grammars" paper by Sergio Medeiros and Fabio Mascarenhas.

The custom message supports %t which is a placeholder for the unexpected token, and %c for the unexpected Unicode char.

Here is an example of Java-like grammar:

# java.peg
Prog        ← 'public' 'class' NAME '{' 'public' 'static' 'void' 'main' '(' 'String' '[' ']' NAME ')' BlockStmt '}'
BlockStmt   ← '{' (!'}' Stmt^stmtb)* '}' # Annotated with `stmtb`
Stmt        ← IfStmt / WhileStmt / PrintStmt / DecStmt / AssignStmt / BlockStmt
IfStmt      ← 'if' '(' Exp ')' Stmt ('else' Stmt)?
WhileStmt   ← 'while' '(' Exp^condw ')' Stmt # Annotated with `condw`
DecStmt     ← 'int' NAME ('=' Exp)? ';'
AssignStmt  ← NAME '=' Exp ';'^semia # Annotated with `semi`
PrintStmt   ← 'System.out.println' '(' Exp ')' ';'
Exp         ← RelExp ('==' RelExp)*
RelExp      ← AddExp ('<' AddExp)*
AddExp      ← MulExp (('+' / '-') MulExp)*
MulExp      ← AtomExp (('*' / '/') AtomExp)*
AtomExp     ← '(' Exp ')' / NUMBER / NAME

NUMBER      ← < [0-9]+ >
NAME        ← < [a-zA-Z_][a-zA-Z_0-9]* >

%whitespace ← [ \t\n]*
%word       ← NAME

# Recovery operator labels
semia       ← '' { error_message "missing semicolon in assignment." }
stmtb       ← (!(Stmt / 'else' / '}') .)* { error_message "invalid statement" }
condw       ← &'==' ('==' RelExp)* / &'<' ('<' AddExp)* / (!')' .)*

For instance, ';'^semi is a syntactic sugar for (';' / %recovery(semi)). %recover operator tries to recover the error at ';' by skipping input text with the recovery expression semi. Also semi is associated with a custom message "missing semicolon in assignment."

Here is the result:

> cat sample.java
public class Example {
  public static void main(String[] args) {
    int n = 5;
    int f = 1;
    while( < n) {
      f = f * n;
      n = n - 1
    };
    System.out.println(f);
  }
}

> peglint java.peg sample.java
sample.java:5:12: syntax error, unexpected '<', expecting '(', <NUMBER>, <NAME>.
sample.java:8:5: missing semicolon in assignment.
sample.java:8:6: invalid statement

As you can see, it can now show more than one error, and provide more meaningful error messages than the default messages.

Custom error message for definitions

We can associate custom error messages to definitions.

# custom_message.peg
START       <- CODE (',' CODE)*
CODE        <- < '0x' [a-fA-F0-9]+ > { error_message 'code format error...' }
%whitespace <- [ \t]*
> cat custom_message.txt
0x1234,0x@@@@,0xABCD

> peglint custom_message.peg custom_message.txt
custom_message.txt:1:8: code format error...

NOTE: If there is more than one element with an error message instruction in a prioritized choice, this feature may not work as you expect.

Change the Start Definition Rule

We can change the start definition rule as below.

auto grammar = R"(
  Start       <- A
  A           <- B (',' B)*
  B           <- '[one]' / '[two]'
  %whitespace <- [ \t\n]*
)";

peg::parser parser(grammar, "A"); // Start Rule is "A"

  or

peg::parser parser;
parser.load_grammar(grammar, "A"); // Start Rule is "A"

parser.parse(" [one] , [two] "); // OK

peglint - PEG syntax lint utility

Build peglint

> cd lint
> mkdir build
> cd build
> cmake ..
> make
> ./peglint
usage: grammar_file_path [source_file_path]

  options:
    --source: source text
    --packrat: enable packrat memoise
    --ast: show AST tree
    --opt, --opt-all: optimize all AST nodes except nodes selected with `no_ast_opt` instruction
    --opt-only: optimize only AST nodes selected with `no_ast_opt` instruction
    --trace: show concise trace messages
    --profile: show profile report
    --verbose: verbose output for trace and profile

Grammar check

> cat a.peg
Additive    <- Multiplicative '+' Additive / Multiplicative
Multiplicative   <- Primary '*' Multiplicative / Primary
Primary     <- '(' Additive ')' / Number
%whitespace <- [ \t\r\n]*

> peglint a.peg
[commandline]:3:35: 'Number' is not defined.

Source check

> cat a.peg
Additive    <- Multiplicative '+' Additive / Multiplicative
Multiplicative   <- Primary '*' Multiplicative / Primary
Primary     <- '(' Additive ')' / Number
Number      <- < [0-9]+ >
%whitespace <- [ \t\r\n]*

> peglint --source "1 + a * 3" a.peg
[commandline]:1:3: syntax error

AST

> cat a.txt
1 + 2 * 3

> peglint --ast a.peg a.txt
+ Additive
  + Multiplicative
    + Primary
      - Number (1)
  + Additive
    + Multiplicative
      + Primary
        - Number (2)
      + Multiplicative
        + Primary
          - Number (3)

AST optimization

> peglint --ast --opt --source "1 + 2 * 3" a.peg
+ Additive
  - Multiplicative[Number] (1)
  + Additive[Multiplicative]
    - Primary[Number] (2)
    - Multiplicative[Number] (3)

Adjust AST optimization with no_ast_opt instruction

> cat a.peg
Additive    <- Multiplicative '+' Additive / Multiplicative
Multiplicative   <- Primary '*' Multiplicative / Primary
Primary     <- '(' Additive ')' / Number          { no_ast_opt }
Number      <- < [0-9]+ >
%whitespace <- [ \t\r\n]*

> peglint --ast --opt --source "1 + 2 * 3" a.peg
+ Additive/0
  + Multiplicative/1[Primary]
    - Number (1)
  + Additive/1[Multiplicative]
    + Primary/1
      - Number (2)
    + Multiplicative/1[Primary]
      - Number (3)

> peglint --ast --opt-only --source "1 + 2 * 3" a.peg
+ Additive/0
  + Multiplicative/1
    - Primary/1[Number] (1)
  + Additive/1
    + Multiplicative/0
      - Primary/1[Number] (2)
      + Multiplicative/1
        - Primary/1[Number] (3)

Sample codes

License

MIT license (© 2022 Yuji Hirose)