Home

Awesome

PyTorch implementation of Cross-modal Memory Network

Vision-Dialog Navigation by Exploring Cross-modal Memory, CVPR 2020.

<!-- ![Model Illustration](teaser/model-1.png) -->

Demo

Requirements

We recommend using the mattersim Dockerfile to install the simulator.

Dataset Download

Download the train, val_seen, val_unseen, and test splits of the CVDN and NDH dataset by executing:

sh tasks/CVDN/data/download.sh
sh tasks/NDH/data/download.sh

Installation

Build the docker image:

docker build -t mattersim .

Run the docker container, mounting your project path:

nvidia-docker run -it --shm-size 64G -v /User/home/Path_To_Project/:/Workspace/ mattersim

Compile the codebase:

mkdir build && cd build
cmake -DEGL_RENDERING=ON ..
make

Install python dependencies by running:

pip install -r tasks/NDH/requirements.txt

Train and Evaluate

To train and evaluate with trusted supervision, sample feedback, and all dialog history:

python tasks/NDH/train.py \
    --path_type=trusted_path \
    --history=all \
    --feedback=sample \
    --eval_type=val \
    --prefix=v1

Train and test with trusted supervision, sample feedback, and all dialog history:

python tasks/NDH/train.py \
    --path_type=trusted_path \
    --history=all \
    --feedback=sample \
    --eval_type=test \
    --prefix=v1

To generate a summary of the agent performance:

python tasks/NDH/summarize_perf.py

Citation

If you use the code in your research, please cite:

@inproceedings{zhu2020vision,
  title={Vision-Dialog Navigation by Exploring Cross-modal Memory},
  author={Zhu, Yi and Zhu, Fengda and Zhan, Zhaohuan and Lin, Bingqian and Jiao, Jianbin and Chang, Xiaojun and Liang, Xiaodan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10730--10739},
  year={2020}
}

Acknowledgements

This repository is built upon the Matterport3DSimulator, CVDN and DAN-VisDial codebase.