Home

Awesome

Resolution Adaptive Networks for Efficient Inference (CVPR2020)

Le Yang*, Yizeng Han*, Xi Chen*, Shiji Song, Jifeng Dai, Gao Huang

This repository contains the implementation of the paper, 'Resolution Adaptive Networks for Efficient Inference'. The proposed Resolution Adaptive Networks (RANet) conduct the adaptive inferece by exploiting the spatial redundancy of input images. Our motivation is that low-resolution representations are sufficient for classifying easy samples containing large objects with prototypical features, while only some hard samples need spatially detailed information, which can be demonstrated by the follow figure.

<div align=center><img width="380" height="410" src="https://github.com/yangle15/RANet-pytorch/blob/master/imgs/RANet_overview.png"/></div>

Results

<div align=center><img width="800" height="230" src="https://github.com/yangle15/RANet-pytorch/blob/master/imgs/anytime_results.png"/></div>

Accuracy (top-1) of anytime prediction models as a function of computational budget on the CIFAR-10 (left), CIFAR-100 (middle) and ImageNet (right) datasets. Higher is better.

<div align=center><img width="800" height="230" src="https://github.com/yangle15/RANet-pytorch/blob/master/imgs/dynamic_results.png"/></div>

Accuracy (top-1) of budgeted batch classification models as a function of average computational budget per image the on CIFAR- 10 (left), CIFAR-100 (middle) and ImageNet (right) datasets. Higher is better.

Dependencies:

Usage

We Provide shell scripts for training a RANet on CIFAR and ImageNet.

Train a RANet on CIFAR

bash train_cifar.sh
python main.py --arch RANet --gpu '0' --data-root YOUR_DATA_PATH --data 'cifar10' --step 2 --nChannels 16 --stepmode 'lg' --scale-list '1-2-3' --grFactor '4-2-1' --bnFactor '4-2-1'

Train a RANet on ImageNet

bash train_imagenet.sh
python main.py --arch RANet --gpu '0,1,2,3' --data-root YOUR_DATA_PATH --data 'ImageNet' --step 8 --growthRate 16 --nChannels 32 --stepmode 'even' --scale-list '1-2-3-4' --grFactor '4-2-2-1' --bnFactor '4-2-2-1'

Citation

If you find this work useful or use our codes in your own research, please use the following bibtex:

@inproceedings{yang2020resolution,
  title={Resolution Adaptive Networks for Efficient Inference},
  author={Yang, Le and Han, Yizeng and Chen, Xi and Song, Shiji and Dai, Jifeng and Huang, Gao},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Contact

If you have any questions, please feel free to contact the authors.

Le Yang: yangle15@mails.tsinghua.edu.cn

Yizeng Han: hanyz18@mails.tsinghua.edu.cn

Acknowledgments

We use the pytorch implementation of MSDNet in our experiments. The code can be found here.