Awesome
Graph-MLP: Node Classification without Message Passing in Graph
PyTorch official implementation of Graph-MLP: Node Classification without Message Passing in Graph.
For the detail, please refer to our paper: https://arxiv.org/abs/2106.04051
<img src="pipeline.png" width="60%" height="60%"> <img src="result.png" width="60%" height="60%">Requirements
- PyTorch 1.7
- Python 3.7
Usage
## cora
python3 train.py --lr=0.001 --weight_decay=5e-3 --data=cora --alpha=10.0 --hidden=256 --batch_size=2000 --order=2 --tau=2
## citeseer
python3 train.py --lr=0.001 --weight_decay=5e-3 --data=citeseer --alpha=1.0 --hidden=256 --batch_size=2000 --order=2 --tau=0.5
## pubmed
python3 train.py --lr=0.1 --weight_decay=5e-3 --data=pubmed --alpha=100 --hidden=256 --batch_size=2000 --order=2 --tau=1
or
bash run.sh
Please check our experimental results in log.txt. When new experiment is finished, the new result will also be appended to log.txt.
Cite
Please cite our paper if you use this code in your own work:
@misc{hu2021graphmlp,
title={Graph-MLP: Node Classification without Message Passing in Graph},
author={Yang Hu and Haoxuan You and Zhecan Wang and Zhicheng Wang and Erjin Zhou and Yue Gao},
year={2021},
eprint={2106.04051},
archivePrefix={arXiv},
primaryClass={cs.LG}
}