Awesome
Towards Energy Efficient Spiking Neural Networks: An Unstructured Pruning Framework
Installing Dependencies
pip install torch torchvision
pip install tensorboard thop spikingjelly==0.0.0.0.12
Usage
To reproduce the experiments on CIFAR10 in the paper, simply follow the default settings
python main.py
You can specify the output path and the weight of penalty term $\lambda$ by
python main.py --penalty-lmbda <lambda> --output-dir <path>
To reproduce the experiments on other datasets, follow the settings in the appendix.
Citation
@inproceedings{shi2024towards,
title={Towards Energy Efficient Spiking Neural Networks: An Unstructured Pruning Framework},
author={Shi, Xinyu and Ding, Jianhao and Hao, Zecheng and Yu, Zhaofei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}