Awesome
Rayleigh Quotient Graph Neural Networks for Graph-level Anomaly Detection
Tested Environment
- Ubuntu 20.04
- Python 3.7.15
- Sklearn 1.0.2
- Pytorch 1.12.1
- Numpy 1.21.6
- Torch_geometric 2.2.0
- Scipy 1.7.3
Datasets
Download zip files from TUDatasets and unzip them in datasets/.
Directory Structure
├── datasets
│ ├── MCF-7
│ │ ├── MCF-7_A.txt
│ │ ├── MCF-7_graph_indicator.txt
│ │ ├── MCF-7_graph_labels.txt
│ │ ├── MCF-7_node_labels.txt
│ ├── dataset.py
│ ├── datautils.py
│ ├── name.py
Use dataset.py to split train, val, and test sets.
Example
python dataset.py --data MCF-7 --trainsz 0.7 --testsz 0.15
Experiments
Parameters
- data: dataset name, default = 'MCF-7'
- lr: learning rate, default = 5e-3
- batchsize: batch size, default = 512
- nepoch: number of training epochs, default = 100
- hdim: hidden dimension of RQGNN, default = 64
- width: width of RQGNN, default = 4
- depth: depth of RQGNN, default = 6
- dropout: dropout rate, default = 0.4
- normalize: batch normalize, default = 1
- beta: hyperparameter in loss function, default = 0.999
- gamma: hyperparameter in loss function, default = 1.5
- decay: weight decay, default = 0
- seed: random seed, default = 10
- patience: patience for training, default = 50
Example
python main.py --data MCF-7 --lr 5e-3 --batchsize 512 --nepoch 100 --hdim 64 --width 4 --depth 6 --dropout 0.4 --normalize 1 --beta 0.999 --gamma 1.5 --decay 0 --seed 10 --patience 50
Citation
@inproceedings{rqgnn,
author = {Xiangyu, Dong and Xingyi, Zhang and Sibo, Wang},
title = {Rayleigh Quotient Graph Neural Networks for Graph-level Anomaly Detection},
year = {2024},
booktitle = {ICLR},
}