Home

Awesome

<h1 align="center"> <!-- <img src="./logo.png" width="100" alt="Symbol-LLM" /> --> <br> Interactive Evolution: A Neural-Symbolic Self-Training Framework for Large Language Models </h1> <p align="center"> <a href="https://xufangzhi.github.io/symbol-llm-page/"><b>[🌐 Website]</b></a> • <a href="http://arxiv.org/abs/2406.11736"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/Symbol-LLM/ENVISIONS_7B_math_iter10"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/xufangzhi/ENVISIONS"><b>[🐱 GitHub]</b></a> </p> <p align="center"> Repo for "<a href="http://arxiv.org/abs/2406.11736" target="_blank">Interactive Evolution: A Neural-Symbolic Self-Training Framework for Large Language Models</a>" </p>

🔥 News

📒 Note

This work is still in progress. You can also check our previous work Symbol-LLM on neural-symbolism. It will appear at ACL 2024 main conference.

🚀 How to Start Training

To try on ENVISIONS, please use the bash script run_self_training.sh or directly use the following command:

For agentic task MiniWob, please use:

python ENVISIONS/self_training_miniwob.py --base_model "llama2chat" --model_size "7B" --task_prefix "miniwob_llama2chat" --vllm_batchsize 1

For mathematical tasks, please use:

python ENVISIONS/self_training.py --base_model "llama2chat" --model_size "7B" --task_prefix "gsm_math_full_llama2chat" --vllm_batchsize 1

For logical reasoning tasks, please use:

python ENVISIONS/self_training_logic.py --base_model "llama2chat" --model_size "7B" --task_prefix "logic_llama2chat" --vllm_batchsize 1

🌐 Acknowledgements

Citation

If you find it helpful, please kindly cite our paper.

@misc{xu2024interactive,
      title={Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models}, 
      author={Fangzhi Xu and Qiushi Sun and Kanzhi Cheng and Jun Liu and Yu Qiao and Zhiyong Wu},
      year={2024},
      eprint={2406.11736},
      archivePrefix={arXiv},
}