Awesome
<h1 align="center"> <!-- <img src="./logo.png" width="100" alt="Symbol-LLM" /> --> <br> Interactive Evolution: A Neural-Symbolic Self-Training Framework for Large Language Models </h1> <p align="center"> <a href="https://xufangzhi.github.io/symbol-llm-page/"><b>[🌐 Website]</b></a> • <a href="http://arxiv.org/abs/2406.11736"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/Symbol-LLM/ENVISIONS_7B_math_iter10"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/xufangzhi/ENVISIONS"><b>[🐱 GitHub]</b></a> </p> <p align="center"> Repo for "<a href="http://arxiv.org/abs/2406.11736" target="_blank">Interactive Evolution: A Neural-Symbolic Self-Training Framework for Large Language Models</a>" </p>🔥 News
- [2024/07/09] A series of checkpoints after self-training with ENVISIONS are released at huggingface ! Cover agent, math and logic domains ! Include 7B and 13B versions ! Check it out !
- [2024/07/07] The codebase will be completed within 1-2 weeks ! Stay tuned !
- [2024/05/20] 🚀🚀🚀 ENVISIONS is under review!
- [2024/05/01] 🔥🔥🔥 We create a new repo for the code of ENVISIONS!
📒 Note
This work is still in progress. You can also check our previous work Symbol-LLM on neural-symbolism. It will appear at ACL 2024 main conference.
🚀 How to Start Training
To try on ENVISIONS, please use the bash script run_self_training.sh
or directly use the following command:
For agentic task MiniWob, please use:
python ENVISIONS/self_training_miniwob.py --base_model "llama2chat" --model_size "7B" --task_prefix "miniwob_llama2chat" --vllm_batchsize 1
For mathematical tasks, please use:
python ENVISIONS/self_training.py --base_model "llama2chat" --model_size "7B" --task_prefix "gsm_math_full_llama2chat" --vllm_batchsize 1
For logical reasoning tasks, please use:
python ENVISIONS/self_training_logic.py --base_model "llama2chat" --model_size "7B" --task_prefix "logic_llama2chat" --vllm_batchsize 1
🌐 Acknowledgements
- The LLM training is based on open-instruct and the generation steps are accelerated by vLLM.
- The environments are modified from Synapse and SeeClick for agentic tasks, PAL for mathemetical tasks, and Logic-LM for logical reasoning tasks.
Citation
If you find it helpful, please kindly cite our paper.
@misc{xu2024interactive,
title={Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models},
author={Fangzhi Xu and Qiushi Sun and Kanzhi Cheng and Jun Liu and Yu Qiao and Zhiyong Wu},
year={2024},
eprint={2406.11736},
archivePrefix={arXiv},
}