Awesome
Julia package for the xtensor-julia
library, the Julia bindings for xtensor.
-
xtensor
is a C++ library for multi-dimensional arrays enabling numpy-style broadcasting and lazy computing. -
xtensor-julia
enables inplace use of julia arrays in C++ with all the benefits fromxtensor
- C++ universal function and broadcasting
- STL - compliant APIs.
- A broad coverage of numpy APIs (see the numpy to xtensor cheat sheet).
The Julia bindings for xtensor
are based on the CxxWrap.jl C++ library.
Installation
using Pkg; Pkg.add("Xtensor");
Documentation
To get started with using Xtensor.jl
and xtensor-julia
, check out the full documentation
http://xtensor-julia.readthedocs.io/
Usage
xtensor-julia offers two container types wrapping julia arrays inplace to provide an xtensor semantics
jltensor
jlarray
.
Both containers enable the numpy-style APIs of xtensor (see the numpy to xtensor cheat sheet).
-
On the one hand,
jlarray
has a dynamic number of dimensions. It can be reshaped dynamically and the new shape is reflected on the Julia side. -
On the other hand
jltensor
has a compile time number of dimensions, specified with a template parameter. Shapes ofjltensor
instances are stack allocated, makingjltensor
a significantly faster expression thanjlarray
.
Example 1: Use an algorithm of the C++ standard library with Julia array.
C++ code
#include <numeric> // Standard library import for std::accumulate
#include <cxx_wrap.hpp> // libcxxwrap import to define Julia bindings
#include "xtensor-julia/jltensor.hpp" // Import the jltensor container definition
#include "xtensor/xmath.hpp" // xtensor import for the C++ universal functions
double sum_of_sines(xt::jltensor<double, 2> m)
{
auto sines = xt::sin(m); // sines does not actually hold values.
return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}
JLCXX_MODULE define_julia_module(jlcxx::Module& mod)
{
mod.method("sum_of_sines", sum_of_sines);
}
Julia Code
using xtensor_julia_test
arr = [[1.0 2.0]
[3.0 4.0]]
s = sum_of_sines(arr)
s
Outputs
1.1350859243855171
Example 2: Create a numpy-style universal function from a C++ scalar function
C++ code
#include <cxx_wrap.hpp>
#include "xtensor-julia/jlvectorize.hpp"
double scalar_func(double i, double j)
{
return std::sin(i) - std::cos(j);
}
JLCXX_MODULE define_julia_module(jlcxx::Module& mod)
{
mod.method("vectorized_func", xt::jlvectorize(scalar_func));
}
Julia Code
using xtensor_julia_test
x = [[ 0.0 1.0 2.0 3.0 4.0]
[ 5.0 6.0 7.0 8.0 9.0]
[10.0 11.0 12.0 13.0 14.0]]
y = [1.0, 2.0, 3.0, 4.0, 5.0]
z = vectorized_func(x, y)
z
Outputs
[[-0.540302 1.257618 1.89929 0.794764 -1.040465],
[-1.499227 0.136731 1.646979 1.643002 0.128456],
[-1.084323 -0.583843 0.45342 1.073811 0.706945]]
Building the HTML Documentation
xtensor-julia
's documentation is built with three tools
While doxygen must be installed separately, you can install breathe by typing
pip install breathe
Breathe can also be installed with mamba
(or conda)
mamba install -c conda-forge breathe
Finally, build the documentation with
make html
from the docs
subdirectory.
Dependencies on xtensor
, xtensor-julia
, and CxxWrap
Xtensor.jl
depends on xtensor-julia
, xtensor
and CxxWrap
libraries
Xtensor.jl | xtensor | xtensor-julia | CxxWrap |
---|---|---|---|
master | >=0.24.2,<0.25 | 0.10.2 | >=0.12.0,<0.13 |
0.9.1 | >=0.24.2,<0.25 | 0.10.2 | >=0.12.0,<0.13 |
0.9.0 | >=0.24.0,<0.25 | 0.10.1 | >=0.11.2,<0.12 |
These dependencies are automatically resolved when using the Julia package manager.
License
We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.
This software is licensed under the BSD-3-Clause license. See the LICENSE file for details.