Home

Awesome

<!-- README.md is generated from README.Rmd. Please edit that file --> <!-- badges: start -->

R-CMD-check

<!-- badges: end -->

democracyData

This package archives a large number of datasets measuring democracy in use in the scholarly literature, and it provides functions to access many others. You can use it to access some widely used datasets, including Polity5, Freedom House, Geddes, Wright, and Frantz’ autocratic regimes dataset, the Lexical Index of Electoral Democracy, the DD/ACLP/PACL/CGV dataset, the main indexes of the V-Dem dataset, and many others.

Installation

The package is only available on Github. Install as follows:

remotes::install_github("xmarquez/democracyData")

Basic usage

For the vast majority of use cases, you can just type the name of the dataset you require. For example, here’s the DD/ACLP/PACL/CGV dataset:

library(democracyData)
pacl
#> # A tibble: 9,159 × 82
#>    order pacl_country  year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#>    <dbl> <chr>        <dbl>    <dbl>        <dbl>    <dbl> <chr>           <dbl>
#>  1     1 Afghanistan   1946      142          700      700 AFG                 1
#>  2     2 Afghanistan   1947      142          700      700 AFG                 1
#>  3     3 Afghanistan   1948      142          700      700 AFG                 1
#>  4     4 Afghanistan   1949      142          700      700 AFG                 1
#>  5     5 Afghanistan   1950      142          700      700 AFG                 1
#>  6     6 Afghanistan   1951      142          700      700 AFG                 1
#>  7     7 Afghanistan   1952      142          700      700 AFG                 1
#>  8     8 Afghanistan   1953      142          700      700 AFG                 1
#>  9     9 Afghanistan   1954      142          700      700 AFG                 1
#> 10    10 Afghanistan   1955      142          700      700 AFG                 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> #   chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> #   entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> #   politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> #   un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> #   un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …

Here’s Polity IV:

polityIV
#> # A tibble: 17,562 × 40
#>    cyear polityIV_ccode scode polityIV_country  year  flag fragment democ autoc
#>    <dbl>          <dbl> <chr> <chr>            <dbl> <dbl>    <dbl> <dbl> <dbl>
#>  1 21800              2 USA   United States     1800     0       NA     7     3
#>  2 21801              2 USA   United States     1801     0       NA     7     3
#>  3 21802              2 USA   United States     1802     0       NA     7     3
#>  4 21803              2 USA   United States     1803     0       NA     7     3
#>  5 21804              2 USA   United States     1804     0       NA     7     3
#>  6 21805              2 USA   United States     1805     0       NA     7     3
#>  7 21806              2 USA   United States     1806     0       NA     7     3
#>  8 21807              2 USA   United States     1807     0       NA     7     3
#>  9 21808              2 USA   United States     1808     0       NA     7     3
#> 10 21809              2 USA   United States     1809     0       NA     9     0
#> # ℹ 17,552 more rows
#> # ℹ 31 more variables: polity <dbl>, polity2 <dbl>, durable <dbl>, xrreg <dbl>,
#> #   xrcomp <dbl>, xropen <dbl>, xconst <dbl>, parreg <dbl>, parcomp <dbl>,
#> #   exrec <dbl>, exconst <dbl>, polcomp <dbl>, prior <dbl>, emonth <dbl>,
#> #   eday <dbl>, eyear <dbl>, eprec <dbl>, interim <dbl>, bmonth <dbl>,
#> #   bday <dbl>, byear <dbl>, bprec <dbl>, post <dbl>, change <dbl>, d4 <dbl>,
#> #   sf <dbl>, regtrans <dbl>, extended_country_name <chr>, GWn <dbl>, …

And here’s a basic version of the V-Dem dataset, including only the 7 main indexes of democracy:

vdem_simple
#> # A tibble: 27,555 × 54
#>    vdem_country_name country_text_id country_id  year historical_date project
#>    <chr>             <chr>                <dbl> <dbl> <date>            <dbl>
#>  1 Mexico            MEX                      3  1789 1789-12-31            1
#>  2 Mexico            MEX                      3  1790 1790-12-31            1
#>  3 Mexico            MEX                      3  1791 1791-12-31            1
#>  4 Mexico            MEX                      3  1792 1792-12-31            1
#>  5 Mexico            MEX                      3  1793 1793-12-31            1
#>  6 Mexico            MEX                      3  1794 1794-12-31            1
#>  7 Mexico            MEX                      3  1795 1795-12-31            1
#>  8 Mexico            MEX                      3  1796 1796-12-31            1
#>  9 Mexico            MEX                      3  1797 1797-12-31            1
#> 10 Mexico            MEX                      3  1798 1798-12-31            1
#> # ℹ 27,545 more rows
#> # ℹ 48 more variables: historical <dbl>, histname <chr>, codingstart <dbl>,
#> #   codingend <dbl>, codingstart_contemp <dbl>, codingend_contemp <dbl>,
#> #   codingstart_hist <dbl>, codingend_hist <dbl>, gapstart1 <dbl>,
#> #   gapstart2 <dbl>, gapstart3 <dbl>, gapend1 <dbl>, gapend2 <dbl>,
#> #   gapend3 <dbl>, gap_index <dbl>, vdem_cowcode <dbl>, v2x_polyarchy <dbl>,
#> #   v2x_polyarchy_codelow <dbl>, v2x_polyarchy_codehigh <dbl>, …

All datasets in this package are fully documented; type ?pacl for example to see the documentation for the PACL dataset.

Downloading democracy data

There are a couple of democracy datasets that are not currently archived in this package: the family of datasets released by Freedom House and the full V-Dem dataset. To download the Freedom House dataset, use the the download_* family of functions; to download the full V-Dem dataset, use the vdemdata package. The package does include the main indexes of version 13.0 of V-Dem (see vdem_simple), so you don’t need to use the vdemdata package if you are only interested in the higher-level indexes of democracy. You can also download directly the latest versions of the World Bank’s Voice and Accountability Index from the World Governance Indicators and Polity5, though there are also archived versions of these two in the package.

For example, we can download and process the Freedom House “Freedom in the World” dataset as follows:

fh <- download_fh(verbose = FALSE)
#> Warning in download_fh(verbose = FALSE): NAs introduced by coercion

#> Warning in download_fh(verbose = FALSE): NAs introduced by coercion

fh 
#> # A tibble: 9,045 × 11
#>    fh_country   year    pr    cl status fh_total fh_total_reversed
#>    <chr>       <dbl> <dbl> <dbl> <fct>     <dbl>             <dbl>
#>  1 Afghanistan  1972     4     5 PF            9                 5
#>  2 Afghanistan  1973     7     6 NF           13                 1
#>  3 Afghanistan  1974     7     6 NF           13                 1
#>  4 Afghanistan  1975     7     6 NF           13                 1
#>  5 Afghanistan  1976     7     6 NF           13                 1
#>  6 Afghanistan  1977     6     6 NF           12                 2
#>  7 Afghanistan  1978     7     7 NF           14                 0
#>  8 Afghanistan  1979     7     7 NF           14                 0
#>  9 Afghanistan  1980     7     7 NF           14                 0
#> 10 Afghanistan  1982     7     7 NF           14                 0
#> # ℹ 9,035 more rows
#> # ℹ 4 more variables: extended_country_name <chr>, GWn <dbl>, cown <dbl>,
#> #   in_GW_system <lgl>

This downloads the latest update of the “Freedom in the World” dataset (1972-2021, corresponding to the 2022 report), puts it in country-year format (extracting the relevant info from the awful Excel table that Freedom House makes available), calculates the variables fh_total and fh_total_reversed, and adds state system information, including a standardized country name, the Gleditsch-Ward country code and the Correlates of War country code.

Other democracy datasets included in this package do not need to be downloaded, but they can often also be “re-downloaded” from the websites of their creators or maintainers if required. For example, one can either access PACL directly by typing

pacl
#> # A tibble: 9,159 × 82
#>    order pacl_country  year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#>    <dbl> <chr>        <dbl>    <dbl>        <dbl>    <dbl> <chr>           <dbl>
#>  1     1 Afghanistan   1946      142          700      700 AFG                 1
#>  2     2 Afghanistan   1947      142          700      700 AFG                 1
#>  3     3 Afghanistan   1948      142          700      700 AFG                 1
#>  4     4 Afghanistan   1949      142          700      700 AFG                 1
#>  5     5 Afghanistan   1950      142          700      700 AFG                 1
#>  6     6 Afghanistan   1951      142          700      700 AFG                 1
#>  7     7 Afghanistan   1952      142          700      700 AFG                 1
#>  8     8 Afghanistan   1953      142          700      700 AFG                 1
#>  9     9 Afghanistan   1954      142          700      700 AFG                 1
#> 10    10 Afghanistan   1955      142          700      700 AFG                 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> #   chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> #   entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> #   politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> #   un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> #   un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …

Or re-download the dataset from Jose Antonio Cheibub’s website as follows:


pacl_redownloaded <- redownload_pacl(verbose = FALSE)

pacl_redownloaded
#> # A tibble: 9,159 × 82
#>    order pacl_country  year aclpcode pacl_cowcode cowcode2 ccdcodelet ccdcodenum
#>    <dbl> <chr>        <dbl>    <dbl>        <dbl>    <dbl> <chr>           <dbl>
#>  1     1 Afghanistan   1946      142          700      700 AFG                 1
#>  2     2 Afghanistan   1947      142          700      700 AFG                 1
#>  3     3 Afghanistan   1948      142          700      700 AFG                 1
#>  4     4 Afghanistan   1949      142          700      700 AFG                 1
#>  5     5 Afghanistan   1950      142          700      700 AFG                 1
#>  6     6 Afghanistan   1951      142          700      700 AFG                 1
#>  7     7 Afghanistan   1952      142          700      700 AFG                 1
#>  8     8 Afghanistan   1953      142          700      700 AFG                 1
#>  9     9 Afghanistan   1954      142          700      700 AFG                 1
#> 10    10 Afghanistan   1955      142          700      700 AFG                 1
#> # ℹ 9,149 more rows
#> # ℹ 74 more variables: aclpyear <dbl>, cowcode2year <dbl>, cowcodeyear <dbl>,
#> #   chgterr <dbl>, ychgterr <dbl>, flagc_cowcode2 <dbl>, flage_cowcode2 <dbl>,
#> #   entryy <dbl>, exity <dbl>, cid <dbl>, wdicode <chr>, imf_code <dbl>,
#> #   politycode <dbl>, bankscode <dbl>, dpicode <chr>, uncode <dbl>,
#> #   un_region <dbl>, un_region_name <chr>, un_continent <dbl>,
#> #   un_continent_name <chr>, aclp_region <dbl>, bornyear <dbl>, …

These two data frames should be identical:


identical(pacl, pacl_redownloaded)
#> [1] TRUE

You should thus normally use the “archived” versions of these datasets, unless you want to manipulate the raw data yourself (using the redownload_* functions with the option return_raw = TRUE), or think they might have been updated since you installed this package.

Included democracy datasets

For a list of all the democracy datasets available through this package, type democracy_info:

library(dplyr)
#> Warning: package 'dplyr' was built under R version 4.2.3
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

democracy_info %>%
  knitr::kable()
datasetlong_namemain_democracy_measure_colmeasure_typebased_onin_pmm_replicationcategorical_regime_typesuser_extendabledownloadableincluded_in_packagefirst_published_usesource_linklicensing_infonotes
anckarThe Anckar-Fredriksson dataset of political regimesdemocracydichotomousbmrFALSETRUEFALSETRUETRUE2018https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/7SSSAH&version=2.0CC0 1.0The democracy measure should be equivalent to democracy_omitteddata from bmr up to 2010; it may have some divergences for the 2011-2016 period.
anrrThe Acemoglu, Naidu, Restrepo, and Robinson datasetdemdichotomousFH,PolityFALSEFALSETRUEFALSETRUE2019https://www.journals.uchicago.edu/doi/full/10.1086/700936Unknown. Assumed CC0 1.0The measure can be extended by using the latest FH, Polity, and PACL Data, but the rules are not entirely transparent, and some cases in the original dataset have been hand-coded.
arat_pmmThe Arat measure of democracypmm_aratcontinuousNATRUEFALSEFALSEFALSETRUE1991NAUnknown. Assumed CC0 1.0Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data.
blmThe Bowman, Lehoucq, and Mahoney index of democracy for Central AmericablmtrichotomousNATRUEFALSEFALSEFALSETRUE2005NAUnknown. Assumed CC0 1.0This used to be downloadable; the website hosting it is down, however.
bmrThe Boix-Miller-Rosato dichotomous coding of democracy, 1800-2015, version 4.0democracy,democracy_omitteddata,democracy_femalesuffragedichotomousPACLFALSEFALSEFALSETRUETRUE2010https://sites.google.com/site/mkmtwo/dataUnknown. Assumed CC0 1.0NA
bnrThe Bernhard, Nordstrom & Reenock Event History Coding of Democratic Breakdownsevent,bnrdichotomousNAFALSEFALSETRUEFALSETRUE2001NAUnknown. Assumed CC0 1.0Can be extended using a full panel of sovereign countries (COW). Extended version included in this package. This used to be downloadable; the website hosting it is down, however.
btiThe Berteslmann Index of Political transformationSI_Democracy_StatuscontinuousNAFALSEFALSEFALSETRUETRUE2006https://bti-project.org/fileadmin/api/content/en/downloads/data/BTI_2006-2022_Scores.xlsxUnknown.NA
bollen_pmmThe Bollen measure of democracypmm_bollencontinuousNATRUEFALSEFALSEFALSETRUE1978NAUnknown. Assumed CC0 1.0The original data was compiled in 1978, for Bollen’s dissertation; existing data seems to be from the 2000 update. I do not know how much it changed over time. Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data.
doorenspleetRenske Doorenspleet’s Democracy Datasetdoorenspleet,regimedichotomousPolityFALSEFALSEFALSEFALSETRUE2000https://www.cambridge.org/core/journals/world-politics/article/abs/reassessing-the-three-waves-of-democratization/25A6CB38E6746F98D882DFC43A54D211Unknown. Assumed CC0 1.0NA
eiuThe Economist Intelligence Unit’s Democracy IndexeiucontinuousNAFALSEFALSEFALSEFALSETRUE2006NAUnknown.The original data has to be manually extracted from the tables in the EIU’s pdf report on the index.
fhFreedom House “Freedom in the World” datastatus,fh_total,fh_total_reversedordinalFHTRUEFALSEFALSETRUEFALSE1973https://freedomhouse.org/reports/publication-archivesUnknown.NA
fh_fullFreedom House “Freedom in the World” datatotalcontinuousFHFALSEFALSEFALSETRUEFALSE2013NAUnknown.This is the 0-100 score Freedom House uses for its more aggregated ratings. Freedom House changed its methodology in 2013, so the full data is different for this period; full data from 2003-2012 is available in their website, but is not yet included in this package.
fh_electoralFreedom House “Electoral Democracies” ListelectoraldichotomousFHFALSEFALSEFALSETRUEFALSE1990NAUnknown.The electoral democracy list seems to have only been compiled since the 1990s, but I have not been able to find an exact date of first compilation.
gwfThe Geddes Wright and Frantz Autocratic Regimes datasetgwf_regimetype,gwf_nonautocracydichotomousPACLFALSETRUETRUETRUETRUE2014http://sites.psu.edu/dictators/Unknown. Assumed CC0 1.0Can be extended using the gwf_duration variable. Extended version included in this package.
hadenius_pmmAxel Hadenius’ Index of Democracypmm_hadeniuscontinuousNATRUEFALSEFALSEFALSETRUE1992NAUnknown. Assumed CC0 1.0Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data.
kailitzThe Steffen Kailitz Dataset of Authoritarian Regime Typescombined_regime,kailitz_binary,kailitz_tridichotomousNAFALSETRUEFALSEFALSETRUE2013https://journals.sagepub.com/doi/full/10.1177/0192512115616830Unknown.NA
LIEDThe Lexical Index of Electoral Democracy, v. 3lexical_indexordinalPIPEFALSEFALSEFALSETRUETRUE2015https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/WPKNITCC0 1.0NA
magaloniAutocracies of the World, 1950-2012 (Version 1.0).demo_nr,demo_r,regime_r,regime_nrdichotomousPACLFALSETRUETRUETRUETRUE2013http://cddrl.fsi.stanford.edu/research/autocracies_of_the_world_dataset/Unknown. Assumed CC0 1.0Can be extended using the duration_nr variable. Extended version included in this package.
mainwaringMainwaring, Brinks, and Perez Linan’s democracy measure for Latin Americamainwaring,RegimetrichotomousNATRUEFALSEFALSEFALSETRUE2001NAUnknown. Assumed CC0 1.0NA
munck_pmmMunck Index of Democracypmm_munckcontinuousNATRUEFALSEFALSEFALSETRUE2009NAUnknown. Assumed CC0 1.0Only available via the Pemstein, Meserve, and Melton (2013) replication data. I have not been able to access the original data.
pacl, pacl_updateThe Democracy and Dictatorship Dataset (DD/PACL/ACLP/CGV)democracy,regime,Democracy,DD_regime,DD_categorydichotomousPACLTRUETRUEFALSETRUETRUE1996http://www.christianbjoernskov.com/bjoernskovrodedata/, https://uofi.box.com/shared/static/bba3968d7c3397c024ec.dtaUnknown. Assumed CC0 1.0The original data was first compiled, as far as I know, for the famous ACLP study “Modernization: Theories and Facts” study of 1996. It was extended and changed by Cheibub, Gandhi, and Vreeland in 2010 (pacl dataset) and further updated by Bjornskov and Rode (2020; pacl_update dataset), who added new institutional variables.
pepsParticipation-Enhanced Polity ScorePEPS1i,PEPS2i,PEPS1q,PEPS2q,PEPS1v,PEPS2v,polity1raw,Polity1,Polity2,Polity3continuousPolityFALSEFALSEFALSETRUETRUE2006http://www.lehigh.edu/~bm05/democracy/PEPS1pub.dtaUnknown. Assumed CC0 1.0NA
PIPEThe Political Institutions and Political Events (PIPE) datasetdemocracy,democracy2,regimedichotomousPIPEFALSEFALSEFALSEFALSETRUE2010https://sites.google.com/a/nyu.edu/adam-przeworski/home/dataUnknown. Assumed CC0 1.0Democracy measures in PIPE are calculated in this package on the basis of imperfect instructions in the codebook. Use with care. This used to be downloadable; the link no longer works, however.
pitfPolitical Instability Task Force democracy indicatorpitf_binarydichotomousPolityFALSEFALSEFALSEFALSETRUE2010http://www.systemicpeace.org/inscr/Unknown. Assumed CC0 1.0Constructed score on the basis of Polity data.
pitfPolitical Instability Task Force democracy indicatorpitfordinalPolityFALSEFALSEFALSEFALSETRUE2010http://www.systemicpeace.org/inscr/Unknown. Assumed CC0 1.0Constructed score on the basis of Polity data.
polityIVThe Polity IV datasetpolity,polity2ordinalPolityTRUEFALSEFALSETRUETRUE1975http://www.systemicpeace.org/inscr/Unknown. Assumed CC0 1.0The first compilation of this dataset (POLITY I) was probably first used in a 1975 study by Eckstein and Gurr, but had been collected by Gurr since the late 1960s. The current form of the data is very different from the original Polity I data. The Polity II codebook survives, but I find no record of the Polity I codebook.
polity_annualThe Polity5 datasetpolity,polity2ordinalPolityTRUEFALSEFALSETRUEFALSE1975http://www.systemicpeace.org/inscr/Unknown. Assumed CC0 1.0The first compilation of this dataset (POLITY I) was probably first used in a 1975 study by Eckstein and Gurr, but had been collected by Gurr since the late 1960s. The current form of the data is very different from the original Polity I data. The Polity II codebook survives, but I find no record of the Polity I codebook.
polyarchyThe Polyarchy Scale and the Contestation Scalecont,polyordinalNATRUEFALSEFALSETRUETRUE1990https://www3.nd.edu/~mcoppedg/crd/poly8500.savUnknown. Assumed CC0 1.0NA
polyarchy_dimensionsLatent Dimensions of Contestation and Inclusiveness by Michael Coppedge, Angel Alvarez, and Claudia MaldonadoCONTEST,INCLUScontinuouslatent variableFALSEFALSEFALSETRUETRUE2008http://www3.nd.edu/~mcoppedg/crd/DahlDims.savUnknown. Assumed CC0 1.0NA
prc_gasiorowskiThe Political Regime Change (PRC) dataset.regime,prc,prc_at_end_year,prc_at_beginning_yeartrichotomousNATRUEFALSEFALSEFALSETRUE1996NAUnknown. Assumed CC0 1.0NA
reignThe Rulers, Elections, and Irregular Governance (REIGN) dataset, regime characteristics worksheet.gwf_regimetypedichotomousGWFFALSETRUEFALSETRUETRUE2016https://github.com/OEFDataScience/REIGN.github.ioUnknown. Assumed CC0 1.0Archived here now, since collection has stopped.
svmdiSuport Vector Machine Democracy Index by Grundler and Kriegersvmdi, csvmdicontinuouslatent variableFALSEFALSEFALSETRUETRUE2016https://ml-democracy-index.net/Unknown. Assumed CC0 1.0NA
svmdiSuport Vector Machine Democracy Index by Grundler and Kriegerdsvmdidichotomouslatent variableFALSEFALSEFALSETRUETRUE2016https://ml-democracy-index.net/Unknown. Assumed CC0 1.0NA
svolik_regimeMilan Svolik’s Regime Datasetregime,regime_numericdichotomousPACLFALSEFALSEFALSEFALSETRUE2012https://campuspress.yale.edu/svolik/the-politics-of-authoritarian-rule/Unknown. Assumed CC0 1.0NA
udsThe Unified Democracy Scoresmean,mediancontinuouslatent variableFALSEFALSETRUEFALSETRUE2010NAUnknown. Assumed CC0 1.0Can be extended using the methods described in this package’s “Replicating and Extending the UD scores of Pemstein, Meserve, and Melton” article (https://xmarquez.github.io/democracyData/articles/articles/Replicating_and_extending_the_UD_scores.html)
ulfelderThe Democracy/Autocracy Dataset by Jay UlfelderrgjtypedichotomousPolityFALSEFALSETRUETRUETRUE2007https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/18836CC0 1.0Can be extended using the rgjdurd and rgjdura variables. Extended version included in this package.
utipThe University of Texas Inequality Project Categorical Dataset of Political Regimesutip_trichotomoustrichotomousNAFALSETRUEFALSETRUETRUE2008http://utip.lbj.utexas.edu/datasets.htmlUnknown. Assumed CC0 1.0Both the dichotomous and trichotomous versions of these measures are calculated by this package. The original dataset distinguishes several different types of democracy.
utipThe University of Texas Inequality Project Categorical Dataset of Political Regimesutip_dichotomous,utip_dichotomous_strictdichotomousNAFALSETRUEFALSETRUETRUE2008http://utip.lbj.utexas.edu/datasets.htmlUnknown. Assumed CC0 1.0Both the dichotomous and trichotomous versions of these measures are calculated by this package. The original dataset distinguishes several different types of democracy.
vanhanenVanhanen measures of democracy, 1800-2018vanhanen_democratizationcontinuousNATRUEFALSEFALSEFALSETRUE1968https://services.fsd.tuni.fi/catalogue/FSD1289?lang=en&study_language=enCC-BY 4.0Vanhanen first collected democracy data on 12 countries for his 1968 dissertation. Current data is different from the original data, though it still uses a similar conceptual scheme.
vdemThe Varieties of Democracy Dataset, version 12v2x_polyarchy,v2x_api,v2x_mpi,v2x_libdem,v2x_partipdem,v2x_delibdem,v2x_egaldemcontinuousNAFALSEFALSEFALSEFALSETRUE2015https://www.v-dem.net/data/the-v-dem-dataset/CC-BY-SA 4.0The full dataset be accessed using the package vdemdata. (Use “remotes::install_github(”vdeminstitute/vdemdata”)“; the package is not on CRAN)
wahman_teorell_hadeniusAuthoritarian Regimes Data Set, version 5.0, by Axel Hadenius, Jan Teorell, & Michael Wahmanregime1ny,regime1nyrobust, regimeny, regimenyrobustdichotomousFH,PolityFALSETRUEFALSETRUETRUE2007https://sites.google.com/site/authoritarianregimedataset/dataUnknown. Assumed CC0 1.0NA
wgi_democracyThe World Governance Indicators “Voice and Accountability” IndexEstimatecontinuousFHFALSEFALSEFALSETRUETRUE2010http://info.worldbank.org/governance/wgi/Unknown.NA

Combining all democracy datasets

You can create one huge data frame including all democracy measures with one call:


democracy_data <- generate_democracy_scores_dataset(output_format = "wide",
                                                    verbose = FALSE)
#> Warning in download_fh(verbose = verbose, include_territories = TRUE): NAs
#> introduced by coercion

#> Warning in download_fh(verbose = verbose, include_territories = TRUE): NAs
#> introduced by coercion
#> Warning: There was 1 warning in `mutate()`.
#> ℹ In argument: `prc = (structure(function (..., .x = ..1, .y = ..2, . = ..1)
#>   ...`.
#> Caused by warning:
#> ! NAs introduced by coercion

democracy_data
#> # A tibble: 37,164 × 89
#>    extended_country_name   GWn  cown in_GW_system  year PEPS1i PEPS1q PEPS1v
#>    <chr>                 <dbl> <dbl> <lgl>        <dbl>  <dbl>  <dbl>  <dbl>
#>  1 Abkhazia                396    NA FALSE         1997     NA     NA     NA
#>  2 Abkhazia                396    NA FALSE         1998     NA     NA     NA
#>  3 Abkhazia                396    NA FALSE         1999     NA     NA     NA
#>  4 Abkhazia                396    NA FALSE         2000     NA     NA     NA
#>  5 Abkhazia                396    NA FALSE         2001     NA     NA     NA
#>  6 Abkhazia                396    NA FALSE         2002     NA     NA     NA
#>  7 Abkhazia                396    NA FALSE         2003     NA     NA     NA
#>  8 Abkhazia                396    NA FALSE         2004     NA     NA     NA
#>  9 Abkhazia                396    NA FALSE         2005     NA     NA     NA
#> 10 Abkhazia                396    NA FALSE         2006     NA     NA     NA
#> # ℹ 37,154 more rows
#> # ℹ 81 more variables: PEPS2i <dbl>, PEPS2q <dbl>, PEPS2v <dbl>,
#> #   PIPE_democracy <dbl>, PIPE_regime <dbl>, anckar_democracy <dbl>,
#> #   anrr_democracy <dbl>, blm <dbl>, bmr_democracy <dbl>,
#> #   bmr_democracy_femalesuffrage <dbl>, bmr_democracy_omitteddata <dbl>,
#> #   bnr <dbl>, bnr_extended <dbl>, bti_democracy <dbl>, csvmdi <dbl>,
#> #   doorenspleet <dbl>, dsvmdi <dbl>, eiu <dbl>, fh_electoral <dbl>, …

This can take some time, since it downloads all downloadable datasets (Freedom House, Polity 5, and the WGI Voice and Accountability index), processes them (adds state system information, puts them in country-year format, fixes wrong codes, etc.), and matches them to all the other datasets. In any case, you can select exactly which datasets to include in your big data frame. See ?generate_democracy_scores_dataset for further options to customize the output.

Latent Variable Indexes of Democracy

The package also offers a series of convenience functions to calculate latent variable indexes of democracy (following Pemstein, Meserve, and Melton’s 2010 article “Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type”); see the vignette on Replicating and Extending the UD scores of Pemstein, Meserve, and Melton. It also contains a pre-calculated extended version of these scores, available as extended_uds:

extended_uds
#> # A tibble: 36,841 × 20
#>    extended_country_name   GWn  cown in_GW_system  year     z1 se_z1 z1_pct975
#>    <chr>                 <dbl> <dbl> <lgl>        <dbl>  <dbl> <dbl>     <dbl>
#>  1 Abkhazia                396    NA FALSE         1997 0.0307 0.328     0.674
#>  2 Abkhazia                396    NA FALSE         1998 0.0307 0.328     0.674
#>  3 Abkhazia                396    NA FALSE         1999 0.0307 0.328     0.674
#>  4 Abkhazia                396    NA FALSE         2000 0.0307 0.328     0.674
#>  5 Abkhazia                396    NA FALSE         2001 0.0307 0.328     0.674
#>  6 Abkhazia                396    NA FALSE         2002 0.0307 0.328     0.674
#>  7 Abkhazia                396    NA FALSE         2003 0.0307 0.328     0.674
#>  8 Abkhazia                396    NA FALSE         2004 0.0307 0.328     0.674
#>  9 Abkhazia                396    NA FALSE         2005 0.236  0.327     0.876
#> 10 Abkhazia                396    NA FALSE         2006 0.236  0.327     0.876
#> # ℹ 36,831 more rows
#> # ℹ 12 more variables: z1_pct025 <dbl>, z1_adj <dbl>, z1_pct975_adj <dbl>,
#> #   z1_pct025_adj <dbl>, z1_as_prob <dbl>, z1_pct975_as_prob <dbl>,
#> #   z1_pct025_as_prob <dbl>, z1_adj_as_prob <dbl>, z1_pct975_adj_as_prob <dbl>,
#> #   z1_pct025_adj_as_prob <dbl>, num_measures <int>, measures <list>

State system functions

The package also includes a couple of other convenience functions to work with historical democracy data and determine state system membership. The first is country_year_coder, which works like the countrycode package, except that it is able to determine state system information for country-year pairs. Suppose you have this dataset:

my_weird_democracy_data <- tibble(
  country = c("Germany", "Germany", "Germany",
              "Germany", "East Germany",
              "Federal Republic of Germany",
              "Somaliland", "Somalia",
              "Palestine", "Russia",
              "Russia", "USSR",
              "Republic of Vietnam",
              "Yugoslavia", 'Yugoslavia',
              "Vietnam, South"),
  year = c( 2015, 1930, 1970, 1945, 1949,
            1992, 1990, 1990, 1940, 1917, 
            1912, 1922, 1975, 1990, 1991, 1954),
  my_measure = rnorm(16))


my_weird_democracy_data
#> # A tibble: 16 × 3
#>    country                      year my_measure
#>    <chr>                       <dbl>      <dbl>
#>  1 Germany                      2015    -0.848 
#>  2 Germany                      1930     0.151 
#>  3 Germany                      1970    -0.474 
#>  4 Germany                      1945    -1.31  
#>  5 East Germany                 1949     0.495 
#>  6 Federal Republic of Germany  1992    -0.528 
#>  7 Somaliland                   1990     0.508 
#>  8 Somalia                      1990    -0.868 
#>  9 Palestine                    1940     0.691 
#> 10 Russia                       1917     0.794 
#> 11 Russia                       1912    -2.02  
#> 12 USSR                         1922     0.0446
#> 13 Republic of Vietnam          1975     0.133 
#> 14 Yugoslavia                   1990     2.12  
#> 15 Yugoslavia                   1991     1.37  
#> 16 Vietnam, South               1954     0.171

and you then want to add state system information. country_year_coder does that for you!


my_weird_democracy_data <- my_weird_democracy_data %>%
  country_year_coder(country,
                     year,
                     match_type = "country",
                     verbose = FALSE,
                     include_in_output = c("extended_country_name", 
                                           "GWn", "cown", 
                                           "polity_ccode", 
                                           "in_GW_system", 
                                           "in_cow_system", 
                                           "in_polity_system",
                                           "polity_startdate",
                                           "polity_enddate"))

my_weird_democracy_data %>%
  knitr::kable()
countryyearmy_measureextended_country_nameGWncownpolity_ccodein_GW_systemin_cow_systemin_polity_systempolity_startdatepolity_enddate
Germany2015-0.8484332German Federal Republic260255255TRUETRUETRUE1990-10-02NA
Germany19300.1509633Germany (Prussia)255255255TRUETRUETRUE1871-01-191945-05-07
Germany1970-0.4741500German Federal Republic260260260TRUETRUETRUE1945-05-081990-10-02
Germany1945-1.3103168German Federal Republic260260260FALSEFALSETRUE1945-05-081990-10-02
East Germany19490.4952382German Democratic Republic265265265TRUEFALSETRUE1945-05-081990-10-02
Federal Republic of Germany1992-0.5282101German Federal Republic260255255TRUETRUETRUE1990-10-02NA
Somaliland19900.5084614SomalilandNANANAFALSEFALSEFALSENANA
Somalia1990-0.8683599Somalia520520520TRUETRUETRUE1960-07-01NA
Palestine19400.6913429British Mandate of PalestineNANANAFALSEFALSEFALSENANA
Russia19170.7942985Russia (Soviet Union)365365365TRUETRUETRUE1800-01-011922-12-29
Russia1912-2.0181489Russia (Soviet Union)365365365TRUETRUETRUE1800-01-011922-12-29
USSR19220.0445613Russia (Soviet Union)365365364TRUETRUETRUE1922-12-301991-12-31
Republic of Vietnam19750.1333470Vietnam, Republic of817817817FALSEFALSETRUE1955-10-261975-12-31
Yugoslavia19902.1189569Yugoslavia345345345TRUETRUETRUE1921-01-011991-07-01
Yugoslavia19911.3728548Yugoslavia345345347TRUETRUETRUE1991-07-012003-03-11
Vietnam, South19540.1714102Vietnam, Republic of817817817TRUETRUEFALSE1955-10-261975-12-31

country_year_coder tries to match not just the country name or the country code (as countrycode does), but also to figure out the appropriate state system code given the year. (Above, for example, the function figures out that Germany 1970 should get a COW code of 260, but Germany 1992 should get 255 - though it should retain the 260 code in the Gleditsch and Ward system of states. This is, incidentally, how download_fh adds the correct COW and GW country codes to Freedom House’s Excel data). It also tries to figure out whether a given country-year is in the specific state system list. (In the example above, Germany in 1945 is not listed as a member of the state system in either COW or Gleditsch and Ward, since it was occupied by the Allies as of 31 December 1945, but is listed as a member of the state system in Polity IV as the Federal Republic, though with a polity score of -66, “interregnum”).

One nice thing about country_year_coder (in my humble opinion!) is that it can sometimes correct country coding errors; I’ve run across more than one dataset with the supposed COW code 255 for the Federal Republic of Germany for the period 1955-1990, which would prevent a clean join to a dataset with the correct COW code, but would be caught by country_year_coder.

There is also a function that allows you to create a blank state system panel for any of the three main state systems:

create_panel(system = "cow")
#> # A tibble: 17,231 × 5
#>     cown cow_country_name         cow_startdate cow_enddate  year
#>    <dbl> <chr>                    <date>        <date>      <dbl>
#>  1     2 United States of America 1816-01-01    NA           1816
#>  2     2 United States of America 1816-01-01    NA           1817
#>  3     2 United States of America 1816-01-01    NA           1818
#>  4     2 United States of America 1816-01-01    NA           1819
#>  5     2 United States of America 1816-01-01    NA           1820
#>  6     2 United States of America 1816-01-01    NA           1821
#>  7     2 United States of America 1816-01-01    NA           1822
#>  8     2 United States of America 1816-01-01    NA           1823
#>  9     2 United States of America 1816-01-01    NA           1824
#> 10     2 United States of America 1816-01-01    NA           1825
#> # ℹ 17,221 more rows

create_panel(system = "GW")
#> # A tibble: 20,135 × 5
#>      GWn GW_country_name          GW_startdate GW_enddate  year
#>    <dbl> <chr>                    <date>       <date>     <dbl>
#>  1     2 United States of America 1816-01-01   NA          1816
#>  2     2 United States of America 1816-01-01   NA          1817
#>  3     2 United States of America 1816-01-01   NA          1818
#>  4     2 United States of America 1816-01-01   NA          1819
#>  5     2 United States of America 1816-01-01   NA          1820
#>  6     2 United States of America 1816-01-01   NA          1821
#>  7     2 United States of America 1816-01-01   NA          1822
#>  8     2 United States of America 1816-01-01   NA          1823
#>  9     2 United States of America 1816-01-01   NA          1824
#> 10     2 United States of America 1816-01-01   NA          1825
#> # ℹ 20,125 more rows

Citation

The standard citation function from base R will produce a list of citations for all the datasets included in this package:

citation(package = "democracyData")

To cite any of the datasets included in this package use:

Acemoglu D, Naidu S, Restrepo P, Robinson JA (2019). “Democracy Does Cause Growth.” Journal of Political Economy, 127(1), 47-100. doi:10.1086/700936 https://doi.org/10.1086/700936, https://www.journals.uchicago.edu/doi/10.1086/700936.

Anckar C, Fredriksson C (2018). “Classifying political regimes 1800-2016: a typology and a new dataset.” European Political Science. doi:10.1057/s41304-018-0149-8 https://doi.org/10.1057/s41304-018-0149-8, https://doi.org/10.1057/s41304-018-0149-8.

Arat ZF (1991). Democracy and human rights in developing countries. Lynne Rienner Publishers, Boulder.

Bell C (2016). “The Rulers, Elections, and Irregular Governance Dataset (REIGN).” http://oefresearch.org/datasets/reign.

Bernhard M, Nordstrom T, Reenock C (2001). “Economic Performance, Institutional Intermediation, and Democratic Survival.” Journal of Politics, 63(3), 775-803. doi:10.1111/0022-3816.00087 https://doi.org/10.1111/0022-3816.00087.

Bertelsmann Stiftung (2022). “Transformation Index of the Bertelsmann Stiftung 2022.” Bertelsmann Stiftung.

Bjørnskov C, Rode M (2020). “Regime types and regime change: A new dataset on democracy, coups, and political institutions.” The Review of International Organizations, 15(2), 531-551. doi:10.1007/s11558-019-09345-1 https://doi.org/10.1007/s11558-019-09345-1.

Boix C, Miller M, Rosato S (2012). “A Complete Dataset of Political Regimes, 1800-2007.” Comparative Political Studies, 46(12), 1523-1554. doi:10.1177/0010414012463905 https://doi.org/10.1177/0010414012463905.

Bollen KA (2001). “Cross-National Indicators of Liberal Democracy, 1950-1990.”

Bollen K, Paxton P (2000). “Subjective Measures of Liberal Democracy.” Comparative Political Studies, 33(1), 58-86. doi:10.1177/0010414000033001003 https://doi.org/10.1177/0010414000033001003.

Bowman K, Lehoucq F, Mahoney J (2005). “Measuring Political Democracy: Case Expertise, Data Adequacy, and Central America.” Comparative Political Studies, 38(8), 939-970. doi:10.1177/0010414005277083 https://doi.org/10.1177/0010414005277083.

Cheibub J, Gandhi J, Vreeland J (2010). “Democracy and dictatorship revisited.” Public Choice, 143(1), 67-101. doi:10.1007/s11127-009-9491-2 https://doi.org/10.1007/s11127-009-9491-2.

Coppedge M, Alvarez A, Maldonado C (2008). “Two Persistent Dimensions of Democracy: Contestation and Inclusiveness.” The journal of politics, 70(03), 632-647. doi:10.1017/S0022381608080663 https://doi.org/10.1017/S0022381608080663.

Coppedge M, Gerring J, Knutsen CH, Lindberg SI, Teorell J, Altman D, Bernhard M, Cornell A, Fish MS, Gastaldi L, Gjerløw H, Glynn A, Grahn S, Hicken A, Kinzelbach K, Marquardt KL, McMann K, Mechkova V, Neundorf A, Paxton P, Pemstein D, Rydén O, von Römer J, Seim B, Sigman R, Skaaning S, Staton J, Sundström A, Tzelgov E, Uberti L, Wang Y, Wig T, Ziblatt D (????). “V-Dem Codebook v13.”

Coppedge M, Reinicke WH (1990). “Measuring Polyarchy.” Studies in Comparative International Development, 25(1), 51-72. doi:10.1007/Bf02716905 https://doi.org/10.1007/Bf02716905.

Doorenspleet R (2000). “Reassessing the Three Waves of Democratization.” World Politics, 52(03), 384-406. doi:10.1017/S0043887100016580 https://doi.org/10.1017/S0043887100016580.

Freedom House (2023). “Freedom in the World 2023: Marking 50 Years in the Struggle for Democracy.” Freedom House. https://freedomhouse.org/report/freedom-world/2023/marking-50-years.

Gasiorowski M (1996). “An Overview of the Political Regime Change Dataset.” Comparative Political Studies, 29(4), 469-483. doi:10.1177/0010414096029004004 https://doi.org/10.1177/0010414096029004004.

Geddes B, Wright J, Frantz E (2014). “Autocratic Breakdown and Regime Transitions: A New Data Set.” Perspectives on Politics, 12(1), 313-331. doi:10.1017/S1537592714000851 https://doi.org/10.1017/S1537592714000851.

Gleditsch K, Ward MD (1999). “Interstate system membership: A revised list of independent states since the congress of Vienna.” International Interactions, 25(4), 393-413. doi:10.1080/03050629908434958 https://doi.org/10.1080/03050629908434958.

Goldstone J, Bates R, Epstein D, Gurr T, Lustik M, Marshall M, Ulfelder J, Woodward M (2010). “A Global Model for Forecasting Political Instability.” American Journal of Political Science, 54(1), 190-208. doi:10.1111/j.1540-5907.2009.00426.x https://doi.org/10.1111/j.1540-5907.2009.00426.x.

Gründler K, Krieger T (2016). “Democracy and growth: Evidence from a machine learning indicator.” European Journal of Political Economy, 45, 85-107. doi:10.1016/j.ejpoleco.2016.05.005 https://doi.org/10.1016/j.ejpoleco.2016.05.005, http://www.sciencedirect.com/science/article/pii/S0176268016300222.

Gründler K, Krieger T (2018). “Machine Learning Indices, Political Institutions, and Economic Development.” CESifo Group Munich. https://www.cesifo-group.de/DocDL/cesifo1_wp6930.pdf.

Gründler K, Krieger T (2021). “Using Machine Learning for measuring democracy: A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019.” European Journal of Political Economy, 102-47. doi:10.1016/j.ejpoleco.2021.102047 https://doi.org/10.1016/j.ejpoleco.2021.102047.

Hadenius A (1992). Democracy and development. Cambridge University Press, New York.

Hadenius A, Teorell J (2007). “Pathways from Authoritarianism.” Journal of Democracy, 18(1), 143-157.

Hsu S (2008). “The Effect of Political Regimes on Inequality, 1963-2002.” UTIP Working Paper.

Kailitz S (2013). “Classifying political regimes revisited: legitimation and durability.” Democratization, 20(1), 39-60. doi:10.1080/13510347.2013.738861 https://doi.org/10.1080/13510347.2013.738861.

Kaufmann D, Kraay A (2020). “Worldwide Governance Indicators.” http://www.govindicators.org.

Magaloni B, Chu J, Min E (2013). “Autocracies of the World, 1950-2012 (Version 1.0).” http://cddrl.fsi.stanford.edu/research/autocracies_of_the_world_dataset.

Mainwaring S, Brinks D, Pérez-Liñán A (2001). “Classifying Political Regimes in Latin America.” Studies in Comparative International Development, 36(1), 37-65. doi:10.1007/bf02687584 https://doi.org/10.1007/bf02687584.

Mainwaring S, Pérez-Liñán A, Brinks D (2014). “Political Regimes in Latin America, 1900-2007 (with Daniel Brinks).” In Democracies and Dictatorships in Latin America: Emergence, Survival, and Fall, chapter Political Regimes in Latin America, 1900-2007 (with Daniel Brinks). Cambridge University Press, New York.

Marquez X (2016). “A Quick Method for Extending the Unified Democracy Scores.” Available at SSRN 2753830. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2753830.

Márquez X (2020). “democracyData: A package for accessing and manipulating existing measures of democracy.” http://github.com/xmarquez/democracyData.

Marshall MG, Gurr TR (2020). Polity 5: Political Regime Characteristics and Transitions, 1800-2018. Dataset Users’ Manual..

Marshall MG, Gurr TR, Jaggers K (2019). Polity IV Project: Political Regime Characteristics and Transitions, 1800-2018. Dataset Users’ Manual..

Moon BE, Birdsall JH, Ciesluk S, Garlett LM, Hermias JJ, Mendenhall E, Schmid PD, Wong WH (2006). “Voting Counts: Participation in the Measurement of Democracy.” Studies in Comparative International Development, 41(2), 3-32. doi:10.1007/BF02686309 https://doi.org/10.1007/BF02686309.

Munck G (2009). Measuring Democracy: A Bridge between Scholarship and Politics. The Johns Hopkins University Press, Baltimore.

Pemstein D, Marquardt KL, Tzelgov E, Wang Y, Medzihorsky J, Krusell J, Miri F, von Römer J (2022). “The V-Dem Measurement Model: Latent Variable Analysis for Cross-National and Cross-Temporal Expert-Coded Data.” Technical Report 21, Varieties of Democracy Institute, University of Gothenburg. https://www.v-dem.net/media/filer_public/25/cb/25cb3f3f-290d-46e1-8eaf-ff2d2c13f4a9/v-dem_working_paper_21.pdf.

Pemstein D, Meserve SA, Melton J (2013). “Replication data for: Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type.” http://hdl.handle.net/1902.1/PMM.

Pemstein D, Meserve S, Melton J (2010). “Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type.” Political Analysis, 18(4), 426-449. doi:10.1093/pan/mpq020 https://doi.org/10.1093/pan/mpq020.

Przeworski A (2013). “Political Institutions and Political Events (PIPE) Data Set.” https://sites.google.com/a/nyu.edu/adam-przeworski/home/data.

Reich G (2002). “Categorizing Political Regimes: New Data for Old Problems.” Democratization, 9(4), 1-24. doi:10.1080/714000289 https://doi.org/10.1080/714000289.

Skaaning S, Gerring J, Bartusevičius H (2015). “A Lexical Index of Electoral Democracy.” Comparative Political Studies, 48(12), 1491-1525. doi:10.1177/0010414015581050 https://doi.org/10.1177/0010414015581050.

Svolik M (2012). The Politics of Authoritarian Rule. Cambridge University Press, Cambridge.

Taylor SJ, Ulfelder J (2015). “A Measurement Error Model of Dichotomous Democracy Status.” Available at SSRN. doi:10.2139/ssrn.2726962 https://doi.org/10.2139/ssrn.2726962.

The Economist Intelligence Unit (2023). “Democracy Index 2022: Frontline democracy and the battle for Ukraine.” The Economist Intelligence Unit.

Ulfelder J (2012). “Democracy/Autocracy Data Set.” http://hdl.handle.net/1902.1/18836.

Ulfelder J, Lustik M (2007). “Modelling Transitions To and From Democracy.” Democratization, 14(3), 351-387. doi:10.1080/13510340701303196 https://doi.org/10.1080/13510340701303196.

Vanhanen T (2019). “Measures of Democracy 1810-2018 (dataset). Version 8.0 (2019-06-17).” http://urn.fi/urn:nbn:fi:fsd:T-FSD1289.

Wahman M, Teorell J, Hadenius A (2013). “Authoritarian Regime Types Revisited: Updated Data in Comparative Perspective.” Contemporary Politics, 19(1), 19-34. https://sites.google.com/site/authoritarianregimedataset/data.

To see these entries in BibTeX format, use ‘print(<citation>, bibtex=TRUE)’, ‘toBibtex(.)’, or set ‘options(citation.bibtex.max=999)’.

You can also find the citation for a specific dataset using the wrapper cite_dataset with the name of the dataset in this package:

cite_dataset("gwf")

[1] B. Geddes, J. Wright, and E. Frantz. “Autocratic Breakdown and Regime Transitions: A New Data Set”. In: Perspectives on Politics 12.1 (2014), pp. 313-331. DOI: 10.1017/S1537592714000851.

Feedback and Caveats

Feedback welcome!

Note that some functions in this package can be quite slow: generating a full democracy dataset (including downloading Freedom House, Polity, and WGI) or applying country_year_coder to a large data frame both can take some time. Suggestions to accelerate the code are welcome.

country_year_coder fails to give correct answers in some weird edge cases mostly involving Yugoslavia, Germany, or Vietnam. If you run across any of these cases, let me know.