Awesome
Meta-Weight-Net
NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for class-imbalance). The implementation of noisy labels is available at https://github.com/xjtushujun/Meta-weight-net.
================================================================================================================================================================
This is the code for the paper:
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng*
To be presented at NeurIPS 2019.
If you find this code useful in your research then please cite
@inproceedings{han2018coteaching,
title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
booktitle={NeurIPS},
year={2019}
}
Setups
The requiring environment is as bellow:
- Linux
- Python 3+
- PyTorch 0.4.0
- Torchvision 0.2.0
Running Meta-Weight-Net on benchmark datasets (CIFAR-10 and CIFAR-100).
Here is an example:
python meta-weight-net-class-imbalance.py --dataset cifar100 --num_classes 100 --imb_factor 0.01
Acknowledgements
We thank the Pytorch implementation on class-balanced-loss(https://github.com/richardaecn/class-balanced-loss) and learning-to-reweight-examples(https://github.com/danieltan07/learning-to-reweight-examples).
Contact: Jun Shu (xjtushujun@gmail.com); Deyu Meng(dymeng@mail.xjtu.edu.cn).