Awesome
Bert-Pytorch-Chinese-TextClassification
Pytorch Bert Finetune in Chinese Text Classification
Step 1
Download the pretrained TensorFlow model:chinese_L-12_H-768_A-12
Step 2
Change the TensorFlow Pretrained Model into Pytorch
cd convert_tf_to_pytorch
export BERT_BASE_DIR=/workspace/mnt/group/ocr/xieyufei/bert-tf-chinese/chinese_L-12_H-768_A-12
python3 convert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path $BERT_BASE_DIR/bert_model.ckpt \
--bert_config_file $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_path $BERT_BASE_DIR/pytorch_model.bin
Step 3
Download the Chinese News DataSet:Train for 5w and Dev for 5k
Step 4
Just Train and Test
cd src
export GLUE_DIR=/workspace/mnt/group/ocr/xieyufei/bert-tf-chinese/glue_data
export BERT_BASE_DIR=/workspace/mnt/group/ocr/xieyufei/bert-tf-chinese/chinese_L-12_H-768_A-12/
export BERT_PYTORCH_DIR=/workspace/mnt/group/ocr/xieyufei/bert-tf-chinese/chinese_L-12_H-768_A-12/
python3 run_classifier_word.py \
--task_name NEWS \
--do_train \
--do_eval \
--data_dir $GLUE_DIR/SouGou/ \
--vocab_file $BERT_BASE_DIR/vocab.txt \
--bert_config_file $BERT_BASE_DIR/bert_config.json \
--init_checkpoint $BERT_PYTORCH_DIR/pytorch_model.bin \
--max_seq_length 256 \
--train_batch_size 24 \
--learning_rate 2e-5 \
--num_train_epochs 50.0 \
--output_dir ./newsAll_output/ \
--local_rank 3
1个Epoch的结果如下:
eval_accuracy = 0.9742
eval_loss = 0.10202122390270234
global_step = 2084
loss = 0.15899521649851786