Awesome
Continual All-in-One Adverse Weather Removal with Knowledge Replay on a Unified Network Structure [TMM 2024]
[Continual All-in-One Adverse Weather Removal with Knowledge Replay on a Unified Network Structure]<br> [De Cheng*], [Yanling Ji*], [Dong Gong], [Nannan Wang], [Junwei Han], [Dingwen Zhang]
Requirements
- Python 3.6+
pip install -r requirements.txt
Experimental Setup
Our code requires three datasets: OTS, Rain100H, Snow100K
Dataset
We recommend putting all datasets under the same folder (say $datasets) to ease management and following the instructions below to organize datasets to avoid modifying the source code. The file structure should look like:
$datasets/
|–– RESIDE/
|–– OTS_beta/
|–– hazy/
|–– clear/
|–– SOTS/
|–– outdoor/
|–– hazy/
|–– clear/
|–– Rain100H/
|–– train
|–– rain
|–– norain
|–– test
|–– rain
|–– norain
|–– Snow100K
|–– train
|–– synthetic
|–– gt
|–– test
|–– Snow100K-M
|–– synthetic
|–– gt
First, run python patch.py
to patch Rain100H.
Usage
If you want to reproduce the results mentioned in our paper, run
python main.py --task_order haze rain snow --memory_size 500 --exp_name haze_rain_snow --eval_step 20000 --device cuda:0
We provide our training checkpoints and you can continue training using the --resume
hyperparameter.
Hyperparameters
The meaning of hyperparameters in the command line is as follows:
params | name |
---|---|
--task_order | task order for dehazing, deraining, desnowing |
--memory_size | memory size |
--exp_name | experiment name |
--eval_step | each step for eval |
--resume | training from previous tasks |
If you encounter any issues or have any questions, please let us know.