Awesome
Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning
This is the official repository for "Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning."
Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning<br> Xiaojie Li^1, Yibo Yang^2, Jianlong Wu^1, Bernard Ghanem^2, Liqiang Nie^1, Min Zhang^1<br> ^1Harbin Institute of Technology (Shenzhen), ^2King Abdullah University of Science and Technology (KAUST)
📒 Updates
- 22 Aug: We updated the arXiv version with additional experiments.
- 20 Jul: We released the code of our paper.
- 8 Jul: We released the first version of our paper.
🔨 Installation
Follow these steps to set up your environment:
-
Create and activate a new Conda environment:
conda create --name mambafscil python=3.10 -y conda activate mambafscil
-
Install CUDA and cuDNN: Follow the official CUDA installation instructions.
-
Install PyTorch and torchvision:
- Using pip:
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
- Using conda:
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
- Using pip:
-
Install MMCV, OpenCV, and other dependencies:
pip install -U openmim mim install mmcv-full==1.7.0 pip install opencv-python matplotlib einops rope timm==0.6.12 scikit-learn==1.1.3 yapf==0.40.1 git clone https://github.com/state-spaces/mamba.git; cd mamba; git checkout v1.2.0.post1; pip install .
-
Clone the repository and set up the directory:
git clone https://github.com/xiaojieli0903/Mamba-FSCIL.git cd Mamba-FSCIL; mkdir ./data
➡️ Data Preparation
-
Download datasets from this link provided by NC-FSCIL.
-
Organize the datasets in the
./data
folder:--data ----cifar/ ----CUB_200_2011/ ----miniimagenet/
🚀 Training
Execute the provided scripts to start training:
CIFAR
sh train_cifar.sh
Session | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
Mamba-FSCIL | 82.8 | 77.85 | 73.69 | 69.67 | 66.89 | 63.66 | 61.48 | 59.74 | 57.51 |
Mini Imagenet
sh train_miniimagenet.sh
Session | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
Mamba-FSCIL | 84.93 | 80.02 | 74.61 | 71.33 | 69.15 | 65.62 | 62.38 | 60.93 | 59.36 |
CUB
sh train_cub.sh
Session | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Mamba-FSCIL | 80.9 | 76.26 | 72.97 | 70.14 | 67.83 | 65.74 | 65.43 | 64.12 | 62.31 | 62.12 | 61.65 |
✏️ Citation
If you find our work useful in your research, please consider citing:
@article{li2024mamba,
title={Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning},
author={Li, Xiaojie and Yang, Yibo and Wu, Jianlong and Ghanem, Bernard and Nie, Liqiang and Zhang, Min},
journal={arXiv preprint arXiv:2407.06136},
year={2024}
}
👍 Acknowledgments
This codebase builds on FSCIL.Thank you to all the contributors.