Awesome
I have decided NOT to maintain this package any further. Please do NOT use it.
JLBoostMLJ.jl
The MLJ.jl interface to JLBoost.jl, a hackable implementation of Gradient Boosting Regression Trees.
Usage Example
using RDatasets;
iris = dataset("datasets", "iris");
iris[!, :is_setosa] = iris.Species .== "setosa";
using MLJ, JLBoostMLJ;
X, y = unpack(iris, x->!(x in [:is_setosa, :Species]), ==(:is_setosa));
using JLBoostMLJ:JLBoostClassifier;
model = JLBoostClassifier()
JLBoostClassifier(
loss = JLBoost.LogitLogLoss(),
nrounds = 1,
subsample = 1.0,
eta = 1.0,
max_depth = 6,
min_child_weight = 1.0,
lambda = 0.0,
gamma = 0.0,
colsample_bytree = 1) @087
Using MLJ machines
Put the model and data in a machine
mljmachine = machine(model, X, y)
Machine{JLBoostClassifier} @730 trained 0 times.
args:
1: Source @910 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
ontinuous,1}}`
2: Source @954 ⏎ `AbstractArray{ScientificTypes.Count,1}`
Fit model using machine
fit!(mljmachine)
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
(feature = :PetalLength, split_at = 1.9, cutpt = 50, gain = 133.33333333333
334, lweight = 2.0, rweight = -2.0)
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
Machine{JLBoostClassifier} @730 trained 1 time.
args:
1: Source @910 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
ontinuous,1}}`
2: Source @954 ⏎ `AbstractArray{ScientificTypes.Count,1}`
Predict using machine
predict(mljmachine, X)
150-element Array{MLJBase.UnivariateFinite{ScientificTypes.Multiclass{2},Bo
ol,UInt32,Float64},1}:
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
⋮
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
Feature importance using machine
feature_importance(fitted_params(mljmachine).fitresult, X, y)
1×4 DataFrame
│ Row │ feature │ Quality_Gain │ Coverage │ Frequency │
│ │ Symbol │ Float64 │ Float64 │ Float64 │
├─────┼─────────────┼──────────────┼──────────┼───────────┤
│ 1 │ PetalLength │ 1.0 │ 1.0 │ 1.0 │
Hyperparameter tuning
Data preparation: need to convert y
to categorical
y_cate = categorical(y)
150-element CategoricalArrays.CategoricalArray{Bool,1,UInt32}:
true
true
true
true
true
true
true
true
true
true
⋮
false
false
false
false
false
false
false
false
false
Set up some hyperparameter ranges
using JLBoost, JLBoostMLJ, MLJ
jlb = JLBoostClassifier()
r1 = range(jlb, :nrounds, lower=1, upper = 6)
r2 = range(jlb, :max_depth, lower=1, upper = 6)
r3 = range(jlb, :eta, lower=0.1, upper=1.0)
MLJBase.NumericRange(Float64, :eta, ... )
Set up the machine
tm = TunedModel(model = jlb, ranges = [r1, r2, r3], measure = cross_entropy)
m = machine(tm, X, y_cate)
Machine{ProbabilisticTunedModel{Grid,…}} @109 trained 0 times.
args:
1: Source @664 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
ontinuous,1}}`
2: Source @788 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
Fit it!
fit!(m)
Machine{ProbabilisticTunedModel{Grid,…}} @109 trained 1 time.
args:
1: Source @664 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
ontinuous,1}}`
2: Source @788 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
Inspected the tuned parameters
fitted_params(m).best_model.max_depth
fitted_params(m).best_model.nrounds
fitted_params(m).best_model.eta
0.9
Simple Fitting
Fit the model with verbosity = 1
mljmodel = fit(model, 1, X, y)
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
(feature = :PetalLength, split_at = 1.9, cutpt = 50, gain = 133.33333333333
334, lweight = 2.0, rweight = -2.0)
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
Choosing a split on SepalLength
Choosing a split on SepalWidth
Choosing a split on PetalLength
Choosing a split on PetalWidth
(fitresult = (treemodel = JLBoost.JLBoostTrees.JLBoostTreeModel(JLBoost.JLB
oostTrees.AbstractJLBoostTree[eta = 1.0 (tree weight)
-- PetalLength <= 1.9
---- weight = 2.0
-- PetalLength > 1.9
---- weight = -2.0
], JLBoost.LogitLogLoss(), :__y__),
target_levels = Bool[0, 1],),
cache = nothing,
report = (AUC = 0.16666666666666669,
feature_importance = 1×4 DataFrame
│ Row │ feature │ Quality_Gain │ Coverage │ Frequency │
│ │ Symbol │ Float64 │ Float64 │ Float64 │
├─────┼─────────────┼──────────────┼──────────┼───────────┤
│ 1 │ PetalLength │ 1.0 │ 1.0 │ 1.0 │,),)
Predicting using the model
predict(model, mljmodel.fitresult, X)
150-element Array{MLJBase.UnivariateFinite{ScientificTypes.Multiclass{2},Bo
ol,UInt32,Float64},1}:
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.881, true=>0.119)
⋮
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
UnivariateFinite{ScientificTypes.Multiclass{2}}(false=>0.119, true=>0.881)
Feature Importance for simple fitting
One can obtain the feature importance using the feature_importance
function
feature_importance(mljmodel.fitresult.treemodel, X, y)
1×4 DataFrame
│ Row │ feature │ Quality_Gain │ Coverage │ Frequency │
│ │ Symbol │ Float64 │ Float64 │ Float64 │
├─────┼─────────────┼──────────────┼──────────┼───────────┤
│ 1 │ PetalLength │ 1.0 │ 1.0 │ 1.0 │