Awesome
YOLOv3
Keras(TF backend) implementation of yolo v3 objects detection.
According to the paper YOLOv3: An Incremental Improvement.
Requirement
- OpenCV 3.4
- Python 3.6
- Tensorflow-gpu 1.5.0
- Keras 2.1.3
Quick start
-
Download official yolov3.weights and put it on top floder of project.
-
Run the follow command to convert darknet weight file to keras h5 file. The
yad2k.py
was modified from allanzelener/YAD2K.
python yad2k.py cfg\yolo.cfg yolov3.weights data\yolo.h5
- run follow command to show the demo. The result can be found in
images\res\
floder.
python demo.py
Demo result
It can be seen that yolo v3 has a better classification ability than yolo v2.
<img width="400" height="350" src="/images/res/dog.jpg"/><img width="400" height="350" src="/images/res/person.jpg"/>
TODO
- Train the model.
Reference
@article{YOLOv3,
title={YOLOv3: An Incremental Improvement},
author={J Redmon, A Farhadi },
year={2018}
Copyright
See LICENSE for details.