Awesome
FPS-Net
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry and Remote Sensing
By Aoran Xiao, Xiaofei Yang, Shijian Lu, Dayan Guan, Jiaxing Huang
Install
conda create -n FPSNet python=3.7
source activate FPSNet
cd /ROOT/
pip install -r requirements.txt
Dataset
Download SemanticKITTI dataset from official website The dataset structure should be
./
├──
├── ...
└── path_to_data_shown_in_config/
└── sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ ├── labels/
| | ├── 000000.label
| | ├── 000001.label
| | └── ...
| ├── calib.txt
| ├── poses.txt
| └── times.txt
└── 08/
Train
Revise dataset path in train.sh and run
cd /train/tasks/semantic
sh train.sh
Inference and Test
Revise dataset path in test.sh and run
cd /train/tasks/semantic
sh test.sh
We provide pre-trained weights, you can download and check (SemanticKITTI: mIoU=57.1 over the testing set; 59.1 over the validation set).
Citation
If you use this code, please cite:
@article{xiao2021fps,
title={FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation},
author={Xiao, Aoran and Yang, Xiaofei and Lu, Shijian and Guan, Dayan and Huang, Jiaxing},
journal={ISPRS Journal of Photogrammetry and Remote Sensing},
volume={176},
pages={237--249},
year={2021},
publisher={Elsevier}
}
Acknowledgement
Part of code is borrowed from lidar-bonnetal, thanks for their sharing!