Awesome
PaDiM-Anomaly-Detection-Localization-master
This is an implementation of the paper PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization.
This code is heavily borrowed from both SPADE-pytorch(https://github.com/byungjae89/SPADE-pytorch) and MahalanobisAD-pytorch(https://github.com/byungjae89/MahalanobisAD-pytorch) projects
<p align="center"> <img src="imgs/pic1.png" width="1000"\> </p>Requirement
- python == 3.7
- pytorch == 1.5
- tqdm
- sklearn
- matplotlib
Datasets
MVTec AD datasets : Download from MVTec website
Results
Implementation results on MVTec
- Image-level anomaly detection accuracy (ROCAUC)
MvTec | R18-Rd100 | WR50-Rd550 |
---|---|---|
Carpet | 0.984 | 0.999 |
Grid | 0.898 | 0.957 |
Leather | 0.988 | 1.0 |
Tile | 0.959 | 0.974 |
Wood | 0.990 | 0.988 |
All texture classes | 0.964 | 0.984 |
Bottle | 0.996 | 0.998 |
Cable | 0.855 | 0.922 |
Capsule | 0.870 | 0.915 |
Hazelnut | 0.841 | 0.933 |
Metal nut | 0.974 | 0.992 |
Pill | 0.869 | 0.944 |
Screw | 0.745 | 0.844 |
Toothbrush | 0.947 | 0.972 |
Transistor | 0.925 | 0.978 |
Zipper | 0.741 | 0.909 |
All object classes | 0.876 | 0.941 |
All classes | 0.905 | 0.955 |
- Pixel-level anomaly detection accuracy (ROCAUC)
MvTec | R18-Rd100 | WR50-Rd550 |
---|---|---|
Carpet | 0.988 | 0.990 |
Grid | 0.936 | 0.965 |
Leather | 0.990 | 0.989 |
Tile | 0.917 | 0.939 |
Wood | 0.940 | 0.941 |
All texture classes | 0.953 | 0.965 |
Bottle | 0.981 | 0.982 |
Cable | 0.949 | 0.968 |
Capsule | 0.982 | 0.986 |
Hazelnut | 0.979 | 0.979 |
Metal nut | 0.967 | 0.971 |
Pill | 0.946 | 0.961 |
Screw | 0.972 | 0.983 |
Toothbrush | 0.986 | 0.987 |
Transistor | 0.968 | 0.975 |
Zipper | 0.976 | 0.984 |
All object classes | 0.971 | 0.978 |
All classes | 0.965 | 0.973 |
ROC Curve
- ResNet18
- Wide_ResNet50_2
Localization examples
<p align="center"> <img src="imgs/bottle.png" width="600"\> </p> <p align="center"> <img src="imgs/cable.png" width="600"\> </p> <p align="center"> <img src="imgs/capsule.png" width="600"\> </p> <p align="center"> <img src="imgs/carpet.png" width="600"\> </p> <p align="center"> <img src="imgs/grid.png" width="600"\> </p> <p align="center"> <img src="imgs/hazelnut.png" width="600"\> </p> <p align="center"> <img src="imgs/leather.png" width="600"\> </p> <p align="center"> <img src="imgs/metal_nut.png" width="600"\> </p> <p align="center"> <img src="imgs/pill.png" width="600"\> </p> <p align="center"> <img src="imgs/screw.png" width="600"\> </p> <p align="center"> <img src="imgs/tile.png" width="600"\> </p> <p align="center"> <img src="imgs/toothbrush.png" width="600"\> </p> <p align="center"> <img src="imgs/transistor.png" width="600"\> </p> <p align="center"> <img src="imgs/wood.png" width="600"\> </p> <p align="center"> <img src="imgs/zipper.png" width="600"\> </p>Reference
[1] Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier. PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization. https://arxiv.org/pdf/2011.08785