Awesome
FAVAE anomaly detection
This is an implementation of the paper Anomaly localization by modeling perceptual features
<p align="center"> <img src="imgs/pic1.jpg" width="600"\> </p>Requirement
- python == 3.7
- pytorch == 1.5
- tqdm
- sklearn
- matplotlib
Datasets
MVTec AD datasets : Download from MVTec website
Code example
- bottle
python train.py --obj bottle --do_aug
Results
<p align="center"> <img src="imgs/pic2.jpg" width="600"\> </p> <p align="center"> <img src="imgs/pic3.jpg" width="600"\> </p> <p align="center"> <img src="imgs/pic4.jpg" width="600"\> </p>Reference
[1] David Dehaene, Pierre Eline. Anomaly localization by modeling perceptual features. https://arxiv.org/pdf/2008.05369.pdf
[2] https://github.com/byungjae89/SPADE-pytorch
[3] https://github.com/plutoyuxie/AutoEncoder-SSIM-for-unsupervised-anomaly-detection-