Awesome
<h1 align="center"><b>⚡️ Tracking Framework for <a href="https://github.com/xg-chu/GAGAvatar">GAGAvatar</a> ⚡️</b></h1> <h3 align="center"> <a href='https://arxiv.org/abs/2410.07971'><img src='https://img.shields.io/badge/ArXiv-PDF-red'></a> <a href='https://xg-chu.site/project_gagavatar/'><img src='https://img.shields.io/badge/Project-Page-blue'></a> <!-- <a href='https://www.youtube.com/watch?v=7A3DMaB6Zk0'><img src='https://img.shields.io/badge/Youtube-Video-red'></a> --> <a href='https://github.com/xg-chu/GAGAvatar/'><img src='https://img.shields.io/badge/GAGAvatar-Code-red'></a> </h3> <div align="center"> <b>🚀 Track video 🚀</b> <div align="center"> <b><img src="./demos/track_obama.gif" alt="drawing" width="300"/></b> </div> </div> <div align="center"> <b>🚅 Track image 🚅</b> <div align="center"> <b><img src="./demos/track_monroe.jpg" alt="drawing" width="200"/></b> </div> </div>Description
GAGAvatar Track is a monocular face tracker built on FLAME. It provides FLAME parameters (including eyeball pose) and camera parameters, along with the bounding box and landmarks used during optimization.
Installation
Build environment
This environment is a sub-environment of GAGAvatar. You can skip this step if you have already built GAGAvatar.
conda env create -f environment.yml
conda activate GAGAvatar_track
Prepare resources
Prepare resources with bash ./build_resources.sh
.
The models and resources are available at https://huggingface.co/xg-chu/GAGAvatar_track.
</details>Fast start
It takes longer to track the first frame.
Track on video(s):
python track_video.py -v ./demos/obama.mp4
Track on image(s):
python track_image.py -i ./demos/monroe.jpg
Track all images in a LMDB dataset:
python track_lmdb.py -l ./demos/vfhq_demo
Citation
If you find our work useful in your research, please consider citing:
@inproceedings{
chu2024gagavatar,
title={Generalizable and Animatable Gaussian Head Avatar},
author={Xuangeng Chu and Tatsuya Harada},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=gVM2AZ5xA6}
}
Acknowledgements
Some part of our work is built based on FLAME, StyleMatte, EMICA and VGGHead. The GAGAvatar Logo is designed by Caihong Ning. We thank you for sharing their wonderful code and their wonderful work.
- FLAME: https://flame.is.tue.mpg.de
- StyleMatte: https://github.com/chroneus/stylematte
- EMICA: https://github.com/radekd91/inferno
- VGGHead: https://github.com/KupynOrest/head_detector