Home

Awesome

Awesome-XAD Awesome

Paper and dataset collection for the paper.

<div align="center"> <img src="images/iad.jpg" width="350px" height="350px"> ></a> <img src="images/vad.jpg" width="350px" height="350px"> </div>

Explainable 2D Anomaly Detection Methods

[Image+Video]

- Attention-based

- Generative-model-based

[Image]

- Attention-based

- Input-perturbation-based

- Generative-model-based

- Foundation-model-based

[Video]

- Attention-based

- Reasoning-based

- Intrinsic interpretable

Datasets

[Image]

- Classification datasets for semantic anomaly detection and OOD detection

[2009] CIFAR-10, [2009] CIFAR-100, [2011] Texture, [2011] SVHN, [2012] MNIST, [2003] Caltech-101, [2015] LSUN, [2015] iSUN, [2015] CelebA, [2017] Fashion-MNIST, [2017] CURE-TSR

- Sensory anomaly detection datasets

[2007] DAGM, [2012] BRATS, [2015] UK-Biobank, [2017] MSLUB, [2019] WMH, [2019] Fishyscapes, [2019] CheXpert, [2019] LAG, [2019] MVTec AD, [2020] MTD, [2020] SDD, [2021] BTAD, [2021] MPDD, [2021] MedMNIST, [2021] KSSD2, [2021] RoadAnomaly21, [2022] VisA, [2022] MVTec LOCO AD

[Video]

[2008] Subway, [2009] UMN, [2010] UCSD-Ped, [2013] CUHK-Avenue, [2018] UCF-Crime, [2018] ShanghaiTech-Campus, [2019] Street-Scene, [2020] XD-Violence, [2021] X-MAN, [2021] TAD, [2022] UBnormal, [2023] NWPU-Campus