Home

Awesome

License Framework

[国内的小伙伴请看更详细的中文说明]This repo contains the official implementation and the new IAA dataset TAD66K of the IJCAI 2022 paper. Our new work on ICCV2023:Link

<div align="center"> <h1> <b> Rethinking Image Aesthetics Assessment: Models, Datasets and Benchmarks </b> </h1> <h4> <b> Shuai He, Yongchang Zhang, Rui Xie, Dongxiang Jiang, Anlong Ming

Beijing University of Posts and Telecommunications </b>

</h4> </div> <!-- ![TANet and TAD66K dataset](https://user-images.githubusercontent.com/15050507/164587655-4af0b519-7213-4f29-b378-5dfc51dfab83.png) ![Performance](https://user-images.githubusercontent.com/15050507/164587663-043a76d8-5d1b-417e-856d-2320fbe26836.png) -->

TAD66K  <a href=""><img width="48" src="docs/release_icon.png"></a>

Introduction

TAD66K

<div align="center">

example3

</div>

Download Dataset


TANet  <a href=""><img width="48" src="docs/release_icon.png"></a>

Introduction

We propose a baseline model, called the Theme and Aesthetics Network (TANet), which can maintain a constant perception of aesthetics to effectively deal with the problem of attention dispersion. Moreover, TANet can adaptively learn the rules for predicting aesthetics according to a recognized theme. By comparing 17 methods with TANet on three representative datasets: AVA, FLICKR-AES and the proposed TAD66K, TANet achieves state-of-the-art performance on all three datasets. TANet Performance

Environment Installation

How to Run the Code

If you find our work is useful, pleaes cite our paper:

@article{herethinking,
  title={Rethinking Image Aesthetics Assessment: Models, Datasets and Benchmarks},
  author={He, Shuai and Zhang, Yongchang and Xie, Rui and Jiang, Dongxiang and Ming, Anlong},
  journal={IJCAI},
  year={2022},
}

Try!

https://user-images.githubusercontent.com/15050507/164580816-f98d1dd9-50a0-47b7-b992-2f0374e8a418.mp4

https://user-images.githubusercontent.com/15050507/164580823-4ea8ff91-825b-43dc-a421-f75455e549ae.mp4

https://user-images.githubusercontent.com/15050507/164580840-b7f5624f-486d-46e6-9dd4-efaa92dde09c.mp4