Home

Awesome

LKM-UNet: Large Kernel Vision Mamba for Medical Segmentation elevates SSMs beyond Convolution and Self-attention 🚀

<div align="center">

arXiv

</div> <p align="center" style="font-size: larger;"> <a href="https://arxiv.org/abs/2403.07332">Large Kernel Vision Mamba UNet for Medical Image Segmentation</a> </p>

w:800px

Requirements:

python 3.10 + torch 2.0.1 + torchvision 0.15.2 (cuda 11.8)

If cuda is 11.8 run:

pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html

Install Mamba: pip install causal-conv1d and pip install mamba-ssm

Install monai: pip install monai

Download code: git clone https://github.com/wjh892521292/LKM-UNet and cd LKM-UNet/lkmunet and run pip install -e .

Preprocessing

nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity

Train models

nnUNetv2_train DATASET_ID 2d all -tr nnUNetTrainerLKMUNet
nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerLKMUNet

Inference

nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c CONFIGURATION -f 'all' -tr nnUNetTrainerLKMUNet --disable_tta -npp 1

CONFIGURATION can be 2d and 3d_fullres for 2D and 3D models, respectively.

Paper

@article{wang2024large,
    title={Large Kernel Vision Mamba UNet for Medical Image Segmentation},
    author={Jinhong Wang and Jintai Chen and Danny Chen and Jian Wu},
    journal={arXiv preprint arXiv:2403.07332},
    year={2024}
}

Acknowledgements

Thank the authors of nnU-Net, Mamba and U-mamba for making their valuable code publicly available.